Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì chữ số tận cùng của 51 là 1 khi nâng lên luỹ thừa n thì chữ số tận cùng không thay đổi
Vì số 47 có tận cùng là 7 khi nâng lên lũy thừa bậc 4n+2 thì chữ số tận cùng là 9.
Vậy chữ số tận cùng của A là : .....1+.....9=.......0 =>chia hết cho 10
Vì chữ số tận cùng của \(51\)là 1 nên khi nâng lên luỹ thừa n thì chữ số tận cùng ko đổi
Vì chữ số tận cùng của 47 là 7 nên khi nâng lên luỹ thừa bậc 4n+2 thì chữ số tận cùng là 9
Ta có: \(51^n+47^{102}=....1+....9=....0⋮10\)
Vậy...........
Ta có:
\(A=3^{1999}-7^{1957}\)
\(A=3^{1996}.3^3-7^{1956}.7\)
\(A=\left(3^4\right)^{499}.27-\left(7^4\right)^{489}.7\)
\(A=\left(\overline{...1}\right)^{499}.27-\left(\overline{...1}\right)^{489}.7\)
\(A=\left(\overline{...1}\right).\left(\overline{...7}\right)-\left(\overline{...1}\right).7\)
\(A=\overline{...7}-\overline{...7}\)
\(A=\overline{...0}\)
Vì \(\overline{...0}\text{⋮}5\)nên A⋮5 (đpcm)
Ta có:
\(B=51^n+47^{102}\)
\(B=\overline{...1}+47^{100}.47^2\)
\(B=\overline{...1}+\left(47^4\right)^{25}.\left(\overline{...9}\right)\)
\(B=\overline{...1}+\left(\overline{...1}\right)^{25}.\left(\overline{...9}\right)\)
\(B=\overline{...1}+\left(\overline{...1}\right)\left(\overline{...9}\right)\)
\(B=\overline{...1}+\overline{...9}\)
\(B=\overline{...0}\)
Vì \(\overline{...0}\text{⋮}10\)nên B⋮10 (đpcm)
Sai đề:
(472)51 vì có 472 số tận cùng là 9=> (472)51có số tận cùng là 1
Với n=1 4n có số tận cùng là 4
=> 4n +(472)51 có số tận cùng là 5 => A ko chia hết cho 10
Với n>1 4n có số tận cùng là 6
=> => 4n +(472)51 có số tận cùng là 6+1=7=> A ko chia hết cho 10
Nếu đã học đồng dư. dùng sẽ nhanh và hay hơn !
chứng minh tận cùng là 0