B= 31+ 32+ 33+ ……+ 3100

Tìm s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

       B  =  31 + 32 + 33 +...+ 3100

    3B   =         32 + 33 + ...+ 3100 + 3101

3B - B =      3101 - 3

2B     = 3101 - 3

2B + 3 = 3n

⇒ 3101   - 3 + 3= 3n

   3n = 3101

n = 101

Kết luận n = 101 

7 tháng 12 2014

\(B=3+3^2+3^3+...+3^{100}\)

\(=>3B=3^2+3^3+...+3^{100}+3^{101}\)

\(3B-B=\left(3^2+3^3+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(2B=3^{101}-3\)

Ta có: \(3^{101}-3+3=3^n\)

\(=>3^{101}=3^n\)

\(n=101\)

8 tháng 11 2017

ta có:

3b= 3^2+3^3+3^4+.......+3^101

3b-b= 3^101-3

vậy 3^n=101

30 tháng 10 2016

1) 3B - B = (32 + 33 + 34 + ... + 3101) - (3 + 32 + 33 + ... + 3100)

2B = 3101 - 3 => 2B + 3 = 3101 => n = 101

2) 52.C - C = (53 + 55 + 57 + 59 + ... + 5103) - (5 + 53 + 55 + 57 + ... + 5101)

24C = 5103 - 5

C =\(\frac{5^{103}-5}{24}\).Tương tự,\(D=\frac{13^{101}-13}{168}\Rightarrow C+D=\frac{5^{103}-5}{24}+\frac{13^{101}-13}{168}=\frac{7.\left(5^{103}-5\right)+\left(13^{101}-13\right)}{168}=\frac{7.5^{103}+13^{101}-48}{168}\)

30 tháng 10 2016

tương tự cái kia =))

19 tháng 6 2016

Ta có:

B=3+3^2+3^3+.......+3^200

3B=3(3+3^2+3^3+.......+3^200)

3B=   3^2+3^3+.......+3^200+3^201

-

  B=3+3^2+3^3+.......+3^200

2B=3^201-3

2B+3=3^201

Mà đề bài cho 2B+3=3^n

=> n=201

Vậy .........

19 tháng 6 2016

Ta có:

B=3+3^2+3^3+.......+3^200

3B=3(3+3^2+3^3+.......+3^200)

3B=   3^2+3^3+.......+3^200+3^201

-

  B=3+3^2+3^3+.......+3^200

2B=3^201-3

2B+3=3^201

Mà đề bài cho 2B+3=3^n

=> n=201

Vậy .........

1 tháng 4 2022

3/4 +3 =

25 tháng 2 2016

OLM duyệt nhanh lên nhé!

25 tháng 10 2016

ta có A=1+3+32+33+......+399+3100

=>3A= 3+32+33+34+......+3100+3101

- A=1+3+32+33+.......+399+3100

=> 2A=3101-1 mà 2A+1=3=>3101-1+1

                                           => 3101-3n

                                           => n= 101

k cho mik nha!

25 tháng 7 2020

Ta có B = 3 + 32 + 33 + ... + 32014 + 32015

=> 3B = 32 + 33 + 34 + .... + 32015 + 32016

Lấy 3B trừ B theo vế ta có 

3B - B = (32 + 33 + 34 + .... + 32015 + 32016) - (3 + 32 + 33 + ... + 32014 + 32015)

   2B   = 32016 - 3

Khi đó 2B + 3 = 3x

<=>  32016 - 3 + 3 = 3x

=> 32016 = 3x

=> x = 2016 

Vậy x = 2016

25 tháng 7 2020

Bg

Ta có: B = 3 + 32 + 33 +...+ 32014 + 32015 

=> 3B = 3.(3 + 32 + 33 +...+ 32014 + 32015)

=> 3B = 3.3 + 3.32 + 3.33 +...+ 3.32014 + 3.32015

=> 3B = 32 + 33 + 34 +...+ 32015 + 32016 

=> 3B - B = (32 + 33 + 34 +...+ 32015 + 32016) - (3 + 32 + 33 +...+ 32014 + 32015)

=> 2B = 32016 - 3

 2B + 3 = 3x

=> 32016 - 3 + 3 = 3x

=> 32016 = 3x

=> x = 2016

2 tháng 2 2020

đỉ mẹ, đỉ má, cái lồn, con cặc.

8 tháng 3 2017

\(B=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)

\(\Rightarrow2B=3^{101}-3\)

\(2B+3=3^n\)

\(\Rightarrow3^{101}-3+3=3^n\)

\(\Rightarrow3^{101}=3^n\)

\(\Rightarrow n=101\)

Vậy \(n=101\)

8 tháng 3 2017

Ta có :

\(B\) = \(3\) + \(3^2\) + \(3^3\) + ........ + \(3^{100}\) ( 100 số hạng)

\(3\)\(B\)= \(3^2\) + \(3^3\) + .............+ \(3^{100}\) + \(3^{101}\)

2B = \(3^{101}\) - 3

=> 2B + 3 = \(3^{101}\)

\(3^{101}\) = \(3^n\)

=> n = 101

Vậy n = 101 là giá trị cần tìm