Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 :
b) \(\frac{x}{3}=\frac{-2}{9}\)
=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)
c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)
=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)
=> x = \(\frac{7}{12}:\frac{-1}{6}\)
=> x =\(\frac{-7}{2}\)
Đề 1 câu 5 :
\(3B=3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow2B=3B-B=3^{201}-3\)
\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)
Do đó n = 201
Bài 2:
\(E=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(\Leftrightarrow E=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)
\(\Leftrightarrow E=\dfrac{3.4.5...100}{2.3.4...99}\)
\(\Leftrightarrow E=\dfrac{\left(3.4.5...99\right).100}{2.\left(3.4...99\right)}\)
\(\Leftrightarrow E=\dfrac{100}{2}=50\)
Vậy ...
Đề bài đúng k z?@@
Hình như là \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2016\)thì phải?
\(a,|x+1|+|x-1|=4\)\((*)\)
- \(TH_1:\hept{\begin{cases}x+1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)
Khi đó pt \((*)\) \(\Leftrightarrow x+1+x-1=4\Leftrightarrow x=2\left(tm\right)\)
- \(TH_2:\hept{\begin{cases}x+1\ge0\\x-1< 0\end{cases}}\Leftrightarrow-1\le x< 1\)
Khi đó pt \((*)\) \(\Leftrightarrow x+1+1-x=4\Leftrightarrow0=2\left(vl\right)\)
- \(TH_3:\hept{\begin{cases}x+1< 0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1\\x\ge1\end{cases}}\left(l\right)\)
- \(TH_4:\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\Leftrightarrow x< -1\)
Khi đó pt \((*)\) \(\Leftrightarrow-x-1+1-x=4\)
\(\Leftrightarrow x=-2\left(tm\right)\)
Vậy pt có 2 \(n_0\) \(x=\pm2\)
\(b,\frac{|2x-1|}{x+1}=\frac{1}{2}\left(Đkxđ:x\ne-1\right)\)
\(\Rightarrow2|2x-1|=x+1\)
- \(TH_1:x\ge\frac{1}{2}\Leftrightarrow2\left(2x-1\right)=x+1\)
\(\Leftrightarrow4x-2=x+1\)
\(\Leftrightarrow x=1\left(tm\right)\)
- \(TH_2:x< \frac{1}{2}\Leftrightarrow2\left(1-2x\right)=x+1\)
\(\Leftrightarrow2-4x=x+1\)
\(\Leftrightarrow x=\frac{1}{5}\left(l\right)\)
Vậy pt có 1 \(n_0\) \(x=1\)