Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a+b+c\right)\left(x+y+z\right)\ge\left(ax+by+cz\right)^2=\left(3ax\right)^2=30^2=90\)
\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge90\)
Xin lỗi bạn nhé ^^
Tại vội quá nên mình nhìn lộn. Phải là 900 mới đúng.
Nhưng như vậy thì có thể đề bài chưa đúng.
P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))
=> P(0) = c = m2
P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))
=> a + b = k2 - c = k2 - m2 là số nguyên (*)
P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))
=> 4a + 2b + m2 = n2
=> 4a + 2b = n2 - m2 là số nguyên (1)
Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên
=> 2a nguyên => a nguyên
Kết hợp với (*) => b nguyên
Từ (1) => n2 - m2 chẵn (2)
=> (n - m)(n + m) chẵn
Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)
Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)
hay n2 - m2 chia hết cho 4
Kết hợp với (1) => \(2b⋮4\)
=> b chia hết cho 2 => b chẵn
Ta có đpcm
Ta có \(ax^3=by^3=cz^3\Leftrightarrow\dfrac{ax^2}{\dfrac{1}{x}}=\dfrac{by^2}{\dfrac{1}{y}}=\dfrac{cz^2}{\dfrac{1}{z}}=\dfrac{ax^2+by^2+cz^2}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=ax^2+by^2+cz^2\Leftrightarrow\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{ax^3}=\sqrt[3]{by^3}=\sqrt[3]{cz^3}=\dfrac{\sqrt[3]{a}}{\dfrac{1}{x}}+\dfrac{\sqrt[3]{b}}{\dfrac{1}{y}}+\dfrac{\sqrt[3]{c}}{\dfrac{1}{z}}=\dfrac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)Vậy \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
A = 1, B = 2, C = 3
x = 8, y = 5, z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội chung nhỏ nhất là 6.
A = 1, B = 2, C = 3
x = 8, y = 5, z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội chung nhỏ nhất là 6.
A = 1, B = 2, C = 3
x = 8, y = 5, z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội chung nhỏ nhất là 6.
Haizzz, bài toán này hóc búa cơ mà, chưa có ai giải đc mà nhỉ? Phải ko cậu?