K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

1/ (x-63)(x+10)(4x-188x-2520)

15 tháng 8 2016

2/ 9(x-1)(2x-1)(64x2 + 208x+32)/8

23 tháng 10 2020

\(A=\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

ĐK : \(\hept{\begin{cases}x,y>0\\x\ne y\end{cases}}\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(=\frac{x+2\sqrt{xy}+y}{x-y}-\frac{x-2\sqrt{xy}+y}{x-y}\)

\(=\frac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y}{x-y}=\frac{4\sqrt{xy}}{x-y}\)

Với \(\hept{\begin{cases}x=7+2\sqrt{3}\\y=7-2\sqrt{3}\end{cases}}\)( tmđk )

=> \(A=\frac{4\sqrt{\left(7+2\sqrt{3}\right)\left(7-2\sqrt{3}\right)}}{7+2\sqrt{3}-\left(7-2\sqrt{3}\right)}\)

\(=\frac{4\sqrt{7^2-\left(2\sqrt{3}\right)^2}}{7+2\sqrt{3}-7+2\sqrt{3}}\)

\(=\frac{4\sqrt{49-12}}{4\sqrt{3}}\)

\(=\frac{4\sqrt{37}}{4\sqrt{3}}=\frac{\sqrt{37}}{\sqrt{3}}=\frac{\sqrt{37}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{3}}=\frac{\sqrt{111}}{3}\)

1 tháng 5 2019

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

Đặt \(x^2+x+1=a\)

\(pt\Leftrightarrow a\left(a+1\right)=12\)

\(\Leftrightarrow a^2+a-12=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-4\\a=3\end{cases}}\)

Thay a rồi tìm nghiệm là xong

31 tháng 7 2016

a) \(\frac{x-3\sqrt{x}+2}{2\sqrt{x}-4}\)

\(=\frac{x-\sqrt{x}-2\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-1}{2}\)

b) \(\frac{x-6\sqrt{x}+9}{4\sqrt{x}-12}\)

\(=\frac{\left(\sqrt{x}-3\right)^2}{4\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}-3}{4}\)

31 tháng 7 2016

\(\frac{x-\sqrt{x}-2\sqrt{x}+2}{2\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(x-\sqrt{x}\right)-\left(2\sqrt{x}-2\right)}{2\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-2\right)}\)