Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)(8x−3)(3x+2)−(4x+7)(x+4)=(2x+1)(5x−1)
20x2−16x−34=10x2+3x−120x2−16x−34=10x2+3x−1
10x2−19x−33=010x2−19x−33=0
(10x+11)(x−3)=0
chỉ bt lm con b thoy
..army,,,,,,,,,,
a) \(\left(2x+3\right)\left(x-4\right)+\left(x-5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x^2-12x-2=3x^2-17x+20\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+20+2\)
\(\Leftrightarrow3x^2-12x=3x^2-17x+22\left(3x^2-17x\right)\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\frac{22}{5}\)
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow20x^2-16x-34=10x^2+3x+1\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2+3x-3x\)
\(\Leftrightarrow20x^2-16x-33=10x^2\)
\(\Leftrightarrow20x^2-16x-33=10x^2-10x^2\)
\(\Leftrightarrow20x^2-16x-33=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{11}{10}\end{cases}}\)
b)x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12
<=> 3x^2 +2x +x^2+2x+1 - 4x^2 +25 +12=0
<=> 4x+38=0
=>4x= -38
=>x= -38/4= -19/2
Ta có : (2x + 3).(x + 4) + (x - 5).(x - 2) = (3x - 5)(x - 4)
<=> 2x2 + 11x + 12 + x2 - 7x - 10 = 3x2 - 17x - 20
<=> 2x2 + 11x + 12 + x2 - 7x - 10 - 3x2 + 17x - 20 = 0
<=> 2x2 + x2 - 3x2 + 11x - 7x + 17x + 12 - 10 - 20 = 0
<=> 21x - 18 = 0
<=> 21x = 18
<=> x = \(\frac{18}{21}=\frac{6}{7}\)
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)
\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)
\(\Leftrightarrow10x-2=0\)
hay 10x=2
\(\Leftrightarrow x=\frac{1}{5}\)
Vậy: \(x=\frac{1}{5}\)
b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)
\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)
\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)
\(\Leftrightarrow2x-6=0\)
hay 2x=6
\(\Leftrightarrow x=3\)
Vậy: x=3
c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)
\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)
\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)
\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)
\(\Leftrightarrow33x-1=0\)
\(\Leftrightarrow33x=1\)
hay \(x=\frac{1}{33}\)
Vậy: \(x=\frac{1}{33}\)
d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)
\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)
\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)
\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2+3x-2x-6=0\)
\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)
e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)
Vì \(3\ne0\)
nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy: \(x\in\left\{0;4\right\}\)
a) $(x+5)(2x-1)=(2x-3)(x+1)$
$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$
$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$
b)
$(x+1)(x+9)=(x+3)(x+5)$
$\Leftrightarrow x^2+10x+9=x^2+8x+15$
$\Leftrightarrow 2x=6\Rightarrow x=3$
c)
$(3x+5)(2x+1)=(6x-2)(x-3)$
$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$
$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$
a, (x-1).(x-2).(x-3)
= (x2 - 2x - x + 2) . (x-3)
= (x2 - 3x + 2). (x-3)4
= x3 - 3x2 - 3x2 + 9x + 2x -6
= x3 - 6x2 + 11x -6
b) (x2 +x+1)(x2-1)(x2-x+1)
= (x4 - x2 + x3 - x+ x2 -1) . (x2 - x +1)
= (x4 + x3 -x -1) . (x2 - x +1)
= x6 - x5 + x4 + x5 - x4 + x3 - x2 + x -1
= x6 + x3 - x2 + x - 1
c) (2x-5)(4-3x)-(3x+11)(5-2x)-15(2x-5)
= (8x - 6x2 - 20 + 15x) - (15x-6x+55-22x) - 30x + 75
= 8x - 6x2 - 20 + 15x - 15x+6x-55+22x - 30x+75
= 6x-6x2 +55
d)(x2-2x+3)(3x-5)-(x2+x-1)(2x+7)
làm tương tự phần C
lưu ý trước dấu ngoặc là dấu trừ, khi phá ngoặc ra phải đổi dấu
Vui lòng viết yêu cầu bài :>
a, (x-2)(3x+5)=(2x-4)(x+1)
<=> (x-2)(3x+5)-2(x-2)(x+1)=0
<=>(x-2)(3x+5-2x-2)=0
<=>(x-2)(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)