Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử (a1 - b1)(a2 - b2).......(a7 - b7) là số lẻ
=> a1 - b1, a2 - b2,............., a7 - b7 là số lẻ (vì nếu 1 trong các số này là số chẵn thì tích của chúng ko là số lẻ)
Khi đó (a1 - b1) + (a2 - b2) +......... + (a7 - b7) là số lẻ (1)
Mà (a1 - b1) + (a2 - b2) + ......... + (a7 - b7) = (a1 + a2 + ....... + a7) - (b1 + b2 + ....... + b7)
Vì b1, b2,............., b7 là hoán vị của a1, a2,.............., a7
=> Hiệu của chúng bằng 0, mâu thuẫn với (1)
Vậy (a1 - b1) + (a2 - b2) +...... + (a7 - b7) là số chãn
Xét tổng:
\(\left(a_1-b_1\right)+\left(a_2-b_2\right)+.....+\left(a_7-b_7\right)\)
=\(\left(a_1+a_2+...+a_7\right)-\left(b_1+b_2+...+b_7\right)=0\)
Vậy tổng của 7 số \(\left(a_1-b_1\right);\left(a_2-b_2\right);...;\left(a_7-b_7\right)=0\)
Suy ra ít nhất có 1 trong 7 số là số chẵn, vì nếu cả 7 số đều lẻ thì tổng của 7 số lẻ là 1 số và do đó nó khác 0.
*Nếu 1 trong 7 số là số chẵn thì tích 7 số đó:
\(\left(a_1-b_1\right)\left(a_2-b_2\right)...\left(a_7-b_7\right)\)là số chẵn
Đây là đáp án do nước Anh công bố, bạn nào thấy đúng thì ****!
cho phân số 95/149, bớt tử số và mẫu số cho cùng 1 số a thì ta có phân số mới rút gọn được thành 3/5.tìm số a
Ta thấy \(a_3=a_1.a_2=-1;a_4=a_2.a_3=1;a_5=-1;...\)
Vậy nên ta có dãy các giá trị a1 ; a2 ; ... ; a100 là: 1 - 1 -1 1 -1 -1 1 ...
Công thức tổng quát : \(a_{3n+1}=1;a_{3n+2}=a_{3n}=-1\)
Vì 100 = 3.33 + 1 nên a100 = 1.
Câu b: Đặt \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)
Ta có: \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)
\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)
Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm
\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)
Câu a: Đặt \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)
\(\Rightarrow16A=2^4+2^8+2^{12}\) \(\Rightarrow15A=2^{12}-1\) \(\Rightarrow A=\frac{2^{12}-1}{15}\) \(\left(1\right)\)
\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\) \(\Rightarrow B=2^{12}-1\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)