Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:\(A=\dfrac{1}{4}\cdot\dfrac{-3}{4}-2\cdot\dfrac{1}{2}\cdot\dfrac{9}{16}+2\cdot\dfrac{1}{2}+\dfrac{3}{4}-1\)
\(=\dfrac{-3}{16}-\dfrac{9}{16}+1+\dfrac{3}{4}-1=-\dfrac{3}{4}+\dfrac{3}{4}=0\)
b: \(B=-x^3-3x^2-\dfrac{9}{2}x+1\)
|x-1|=2
=>x-1=2 hoặc x-1=-2
=>x=3 hoặc x=-1
Khi x=-1 thì \(B=-\left(-1\right)-3\cdot1+\dfrac{9}{2}+1=1-3+1+\dfrac{9}{2}=-1+\dfrac{9}{2}=\dfrac{7}{2}\)
Khi x=3 thì \(B=-27-27-\dfrac{9}{2}\cdot3+1=-53-\dfrac{27}{2}=-66.5\)
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)