Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao AD. Xét ΔCBE và ΔABD có B E C ^ = A D B ^ = 90 ∘ và góc B chung nên ΔCBE ~ ΔABD (g.g) => B C A B = B E B D hay 18 A B = 6 , 75 9 => AB = 24cm.
Đáp án: C
Câu a sử dụng tính chất đường phân giác trong tam giác
Câu b sử dụng tam giác đồng dạng
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm
Bài 1 : Bài giải
A B C D E F O
a, Trong \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\text{ }\Rightarrow\text{ }9^2+12^2=81+144=225=BC^2\text{ }\Rightarrow\text{ }BC=5\text{ }cm\)
b, Vì BD là đường phân giác \(\widehat{ABC}\) nên : \(\widehat{B_1}=\widehat{B_2}\)
Xét 2 tam giác \(\Delta ABD\) vuông tại A và \(\Delta AED\) vuông tại E có :
\(BD\) : cạnh huyền - cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( cmt )
\(\Rightarrow\text{ }\Delta ABD=\Delta AED\text{ }\left(ch-gn\right)\)
\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)
\(\Rightarrow\text{ }\Delta DAE\text{ cân }\)
c, Trong \(\Delta DEC\text{ }\) vuông tại E có : DC là cạnh đối diện với \(\widehat{E}\) nên \(DC\) là cạnh có độ dài lớn nhất \(\Rightarrow\text{ }DE< DC\)
Mà \(DA=DE\text{ nên }DA< DC\)
d, Vì \(\hept{\begin{cases}DE\text{ }\perp\text{ }BC\\BF\text{ }\perp\text{ }CF\\AB\text{ }\perp\text{ }AC\end{cases}}\text{ }\Rightarrow\text{ }DE\text{ , }AB\text{ và }BF\text{ là đường cao của }\Delta OBC\)
\(\Rightarrow\text{ }AB\text{, }DE\text{ và }CF\text{ đồng quy tại 1 điểm}\)
a: Xét ΔABC có BM là phân giác
nên AM/AB=CM/BC
=>AM/15=CM/10
=>AM/3=CM/2=(AM+CM)/(3+2)=15/5=3
=>AM=9cm; CM=6cm
b: BM vuông góc BN
=>BN là phân giác góc ngoài tại B
=>NC/NA=BC/BA
=>NC/(NC+15)=10/15=2/3
=>3NC=2NC+30
=>NC=30cm
ai giúp mình gấp với😭
a) ta có AB = AC = 1CM (vì tam giác ABC cân tại A)
ta có : BC² = AB² + AC²
BC² = 1² + 1² = 1 + 1 = 2
BC = \(\sqrt{2}\)
b) ta có: AB² + AC² = BC²
mà AB = AC
=> 2AB² = BC² = \(\sqrt{18}^2=18\)
AB² = 9
AB = 3 (= AC)