Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
B)
Vì (7n+6)/(6n+7) chưa tối giản
=>7n+6 và 6n+7 cùng chia hết cho d (d E N,d # 1)
=>(7n+6)-(6n+7) chia hết cho d
=>n-1 chia hết cho d
Mà 6n+7 chia hết cho d
=>(6n+7)-6(n-1) chia hết cho d
=>13 chia hết cho d
=>d E Ư(13)={1;13}
Mà d#1
=>d=13
=>n-1=13k (k E N)
=>n=13k+1
Vậy với n=13k+1 thì (7n+6)/(6n+7) chưa tối giản
a) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
=> \(\frac{5}{x}=\frac{1+2y}{6}\)
=> 5.6 = x(1 + 2y)
=> x(1 + 2y) = 30 = 1 . 30 = 30 . 1 = 2 . 15 = 15 . 2 = 5 . 6 = 6. 5 = 3 . 10 = 10 .3
Vì 1 + 2y là số lẽ nên 1 + 2y \(\in\){1; 15; 3; 5}
Lập bảng :
x | 30 | 2 | 10 | 6 |
1 + 2y | 1 | 15 | 3 | 5 |
y | 0 | 7 | 1 | 2 |
Vì x và y là số nguyên tố nên ....
mọi người giúp mik câu này nha tks mn nhìu