K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

a, 4n+2         chc 2n+6
=>4n+12-10   chc 2n+6
=>2(2n+6)-10 chc 2n+6
=>10 chc 2n+6
2n+6 thuộc ước của 10
Xét 2n chẵn, 6 chẵn =>chọn đc n=-2; -4; 5; -16

15 tháng 6 2016

215+165=215+220=215(1+25)=215*33
Vì 33 chc 11 và chc 3 
Nên 215+165 chc 3 và 11

5 tháng 11 2019

1.

Gọi P=abcdeg

abc chia hết cho7

deg chia hết cho 7

Suy ra abc-deg chia hết cho 7

Và abcdeg chia hết cho 7( vì abc và deg đều chia hết cho 7 và nhân lên thì cũng chia hết cho 7)

2.

5+5²+5³+5⁴+........+5⁹⁹+5¹⁰⁰

=(5+5²)+(5³+5⁴)+......+(5⁹⁹+5¹⁰⁰)

=(5+5²)+5²×(5+5²)+.....+5⁹⁸×(5+5²)

=1×30+5²×30+........+5⁹⁸×30

=30×(1+5²+......+5⁹⁸) chia hết cho 6 vì 30 chia hết cho 6.

Nhấn cho mk r mk giải tiếp cho

14 tháng 9 2019

Mình ko biết

Đặt n = 2k , ta có                      ( đk k >= 1 do n là một số chẵn lớn hơn 4)

\(\left(2k\right)^4-4\times\left(2k\right)^3-4\times\left(2k\right)^2+16\times2k\)

\(=16k^4-32k^3-16k^2+32k\)

\(=16k^2\left(k^2-1\right)-32k\left(k^2-1\right)\)

\(=16k\times k\left(k-1\right)\left(k+1\right)-32\times k\left(k-1\right)\left(k+1\right)\)

Nhận xét \(\left(k-1\right)k\left(k+1\right)\)  là 3 số tự nhiên liên tiếp nên 

\(\left(k-1\right)k\left(k+1\right)\) chia hết cho 3

Suy ra điều cần chứng minh

23 tháng 11 2016

câu 1:

a, giả sử 2 số chẵn liên tiếp là 2k và (2k+2) ta có:

2k(2k+2) = 4k2+4k = 4k(k+1) chia hết cho 8 vì 4k chia hết cho 4, k(k+1) chia hết cho 2

b, giả sử 3 số nguyên liên tiếp là a,a+1,a+2 với mọi a thuộc Z

  • a,a+1,a+2 là 3 số nguyên liên tiếp nên tồn tại duy nhất một số chẵn hoặc có 2 số chẵn nên tích của chúng sẽ chia hết cho 2.

mặt khác vì là 3 số tự nhiên liên tiếp nên sẽ chia hết cho 3.

vậy tích của 3 số nguyên liên tiếp chia hết cho 6.

c, giả sử 5 số nguyên liên tiếp là a,a+1,a+2, a+3,a+4 với mọi a thuộc Z

  • vì là 5 số nguyên liên tiếp nên sẽ tồn tại 2 số chẵn liên tiếp nên theo ý a tích của chúng choa hết cho 8.
  • tích của 3 số nguyên liên tiếp chia hết cho 3.
  • tích của 5 số nguyên liên tiếp chia hết cho 5.

vậy tích của 5 số nguyên liên tiếp chia hết cho 120.

câu 2:

a, a3 + 11a = a[(a- 1)+12] = (a - 1)a(a+1) + 12a

  • (a - 1)a(a+1) chia hết cho 6 ( theo ý b câu 1)
  • 12a chia hết cho 6.

vậy a3 + 11a chia hết cho 6.

b, ta có a- a = a(a2 - 1) = (a-1)a(a+1) chia hết cho 3 (1) 

mn(m2-n2) = m3n - mn3 = m3n - mn + mn - mn3 = n( m- m) - m(n3 -n)

theo (1) mn(m2-n2) chia hết cho 3.

c, ta có: a(a+1)(2a+10 = a(a+1)(a -1+ a +2) = [a(a+1)(a - 1) + a(a+1)(a+2)] chia hết cho 6.( théo ý b bài 1)

20 tháng 9 2018

a) 74n-1 \(⋮\)74-1=2401-1=2400\(⋮\)5

b) 34n+1+2=(32)2n.3+2=92n.3+2

Ta có: 9≡-1(mod 5)

=> 92n≡1(mod 5)

=> 92n.3≡3(mod 5)

=>92n.3+2≡0(mod 5)

=>92n.3+2\(⋮\)5

Máy mình bị lỗi nhấn đọc tiếp ko được!

Cho mình xin lỗi!

Chúc bạn học tốt!

24 tháng 2 2021

câu a: 7^4n = (7^4)^n

vì 7^4 tận cùng là 1, mà số tận cùng 1 mũ n vẫn luôn tận cùng là 1 => số đó trừ 1 sẽ tận cùng là 0 nên luôn chia hết cho 5

16 tháng 1 2021

c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)

\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)

hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)

3n + 21-15-5
3n-1-33-7
n-1/3-11-7/3

Vì n thuộc N => n = { 1 ; -1 }

16 tháng 1 2021

b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)

n - 21-111-11
n3113-9
25 tháng 12 2016

bn ko lm thì thôi đừng như thế chứ

26 tháng 12 2016

mình làm ý nào cũng được nha