Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3
⇒⇒ p có dạng 3k + 1 hoặc 3k + 2 (k∈∈N)
+) Trường hợp p= 3k+1
Nếu d chia cho 3 dư 1 => p + 2d = 3k + 1 + 6n +2 = 3k + 6n + 3 chia hết cho 3 ( Mâu thuẫn với p + 2d là số nguyên tố )
Nếu d chia cho 3 dư 2 => d = 3n + 2 => p + d = 3k + 1+ 3n+2 = 3k + 3n +3 chia hết cho 3 ( Mâu thuẫn )
Vậy d chia hết cho 3
+) Trường hợp p = 3k + 2. Tương tự ta có : d chia hết cho 3
=> d chia hết cho 3
Mà p; p+d là số nguyên tố => lẻ => p + d - p = d chẵn hay d chia hết cho 2
Vậy d chia hết cho 2 và 3 => d chia hết cho 6
=>2013= |x-4+10-x+x+101+999-x+x+1000|
rồi cộng lại đc bn + x
rồi chia Th ra
Xét VP = \(\left(\left|x-4\right|+\left|x+999\right|\right)+\left(\left|x-10\right|+\left|x+1000\right|\right)+\left|x+101\right|\)
\(\ge\left|x+999+4-x\right|+\left|x+1000+10-x\right|+\left|x+101\right|\)
\(=2013+\left|x+101\right|\ge2013=VT\)
=> VP \(\ge\)VT
Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x+999\right)\left(4-x\right)\ge0\\\left(x+1000\right)\left(10-x\right)\ge0\\x+101=0\end{cases}}\)<=> x = -101
Vậy VP = VT <=> x = -101