K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2017

\(a^3\left(a-1\right)+2\left(a-1\right)=\left(a-1\right)\left(a^3+2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a^3+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\a^3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\\sqrt[3]{-2}\end{matrix}\right.\)

8 tháng 6 2017

\(a^3\left(a-1\right)+2\left(a-1\right)=0\\ \Leftrightarrow\left(a-1\right)\left(a^3+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}a-1=0\\a^3+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=1\\a=\sqrt[3]{-2}\end{matrix}\right.\)

30 tháng 11 2016

Ta có :

\(1+a+a^2+....+a^{63}\)

\(=\left(1+a\right)+a^2\left(1+a\right)+....+a^{62}\left(1+a\right)\)

\(=\left(1+a\right)\left(1+a^2+a^4+....+a^{62}\right)\)

\(=\left(1+a\right)\left[\left(1+a^2\right)+a^4\left(1+a^2\right)+.....+a^{60}\left(1+a^2\right)\right]\)

\(=\left(1+a\right)\left(1+a^2\right)\left(1+a^4+....+a^{60}\right)\)

.....

\(=\left(1+a\right)\left(1+a^2\right).....\left(1+a^{32}\right)\)

30 tháng 11 2016

Có \(\left(1+a\right)\left(1+a^2\right)...\left(1+a^{32}\right)=\frac{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)

\(=\frac{\left(a^2-1\right)\left(a^2+1\right)...\left(a^{32}+1\right)}{a-1}\)

\(...\)

\(=\frac{\left(a^{32}-1\right)\left(a^{32}+1\right)}{a-1}\)

\(=\frac{a^{64}-1}{a-1}\)

\(=\frac{\left(a-1\right)\left(a^{63}+a^{62}+...+a^2+a+1\right)}{a-1}\)

\(=a^{63}+a^{62}+...+a^2+a+1\)

Vậy ...

30 tháng 11 2016

ta có (a-1)(1+a+a2+......+a63)=a64-1

        (a-1)(a+1)(a2+1)....(a32+1)=a64-1

DD
15 tháng 1 2022

\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\Rightarrow a,b,c\le1\Leftrightarrow a-1,b-1,c-1\le0\)

\(a^3+b^3+c^3-a^2-b^2-c^2=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Suy ra \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

mà \(a^2+b^2+c^2=1\)do đó trong ba số \(a,b,c\)có hai số bằng \(1\), một số bằng \(0\).

Khi đó \(a^{2022}+b^{2023}+c^{2024}=1+0+0=1\).

16 tháng 12 2019

=>a^2+b^2+c^2+3-2a-2b-2c=0

=>(a^2-2a+1)+(b^2-2b+1)+(c62-2c+1)=0

=>(3 hằng dẳng thức của a-1 b-1 c-1)

Suy ra (a-1)^2=0

và (b-1)^2=0

và(c-1)^2=0

thay vào A suy ra A=0

cố gắng trình bày lại nhé bạn!

19 tháng 3 2016

Đặt  \(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\)

Với mọi  \(a,b,c>0\)  thì ta có bất đẳng thức luôn đúng với điều kiện trên như sau:

 \(a^3+b^3\ge a^2b+ab^2;\)  \(b^3+c^3\ge b^2c+bc^2\)  và  \(b^3+c^3\ge b^2c+bc^2\)

Khi đó, vế trái của bất đẳng thức cần chứng minh, tức biểu thức  \(A\)  sẽ trở thành:

\(A=\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge\frac{a^2b+ab^2}{2ab}+\frac{b^2c+bc^2}{2bc}+\frac{c^2a+ca^2}{2ca}=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c\)

Xảy ra đẳng thức trên khi và chỉ khi  \(a=b=c\)

5 tháng 7 2017

\(A=\left(x-3\right)^2-2\left(2-x\right)\left(x+2\right)-\left(x+1\right)^2\)

\(=x^2-6x+9-2\left(4-x^2\right)-x^2-2x-1\)

\(=x^2-6x+9-8+2x^2-x^2-2x-1=2x^2-8x=2x\left(x-4\right)\)

5 tháng 7 2017

sky sơn tùng giỏi toán quá z. hay kb với tui đi. rồi tui hỏi bài

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

11 tháng 9 2017

a)\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)

\(=-3x.\left(x^2+2.x.2+2^2\right)+\left(x^2+x+3x-3\right).\left(x+1\right)-\left(2x\right)^2-2.2.x.\left(-3\right)+\left(-3\right)^2\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+\left(x+3x\right)-3\right).\left(x+1\right)-4x+12x+9\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+4x-3\right)\left(x+1\right)-4x+12x+9\)

\(=-3x^3-12x^2-12x+x^3+4x^2-3x+x^2+4x-3-4x+12x+9\)

\(=\left(-3x^3-x^3\right)+\left(-12x^2+4x^2+x^2\right)+\left(-12x-3x+4x-4x+12x\right)+\left(-3+9\right)\)

\(=-2x^3-7x^2-3x+6\)

b)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.\left(x+3\right)-3\left(x+3\right)\right)\left(x+2\right)-\left(x.\left(x^2-3\right)-1\left(x^2-3\right)\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.x+x.3-3.x+\left(-3\right).3\right)\left(x+2\right)-\left(x.x^2+x.\left(-3\right)-1.x^2+\left(-1\right).\left(-3\right)\right)-5x.x+\left(-5x\right).4-x^2-2x5+5^2\)

\(=\left(x^2+3x-3x-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2+\left(3x-3x\right)-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=x^3+2x^2-9x-15-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^3-x^3\right)+\left(2x^2-x^2-5x^2-x^2\right)+\left(-9x-3x-20x-10x\right)+\left(-18+3+25\right)\)

\(=-5x^2-42x+10\)