K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

\(A=2^{2014.2015}.5^{2014.2015}\)

\(B=2^{2015.2014}.5^{2015.2014}\)

Vậy A = B

5 tháng 10 2015

Haha , Việt làm sai đâu phải nhân đâu              

21 tháng 11 2018

\(\Leftrightarrow\frac{x^{2014}}{a^2+b^2+c^2+d^2}+\frac{y^{2014}}{a^2+b^2+c^2+d^2}+\frac{z^{2014}}{a^2+b^2+c^2+d^2}+\frac{t^{2014}}{a^2+b^2+c^2+d^2}\)

\(-\frac{x^{2014}}{a^2}-\frac{y^{2014}}{b^2}-\frac{z^{2014}}{c^2}-\frac{t^{2014}}{d^2}=0\)

\(\Leftrightarrow\left(\frac{x^{2014}}{a^2+b^2+c^2+d^2}-\frac{x^{2014}}{a^2}\right)+\left(\frac{y^{2014}}{a^2+b^2+c^2+d^2}-\frac{y^{2014}}{b^2}\right)+\left(\frac{z^{2014}}{a^2+b^2+c^2+d^2}-\frac{z^{2014}}{c^2}\right)\)

\(+\left(\frac{t^{2014}}{a^2+b^2+c^2+d^2}-\frac{t^{2014}}{d^2}\right)=0\)

\(\Leftrightarrow x^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+y^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\right)+\)

\(z^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\right)+t^{2014}.\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\right)=0\)

vì a2,b2,c2,d2 lớn hơn hoặc bằng 0

=>  \(\hept{\begin{cases}\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{b^2}\ne0\\\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{c^2}\ne0\end{cases}}và....\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{d^2}\ne0\)

\(\Rightarrow\hept{\begin{cases}x^{2014}=0\\y^{2014}=0\\z^{2014}=0\end{cases}}và..t^{2014}=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}và...t=0\)

=> \(\hept{\begin{cases}x^{2015}=0\\y^{2015}=0\\z^{2015}=0\end{cases}}và..t^{2015}=0\Rightarrow x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

vậy \(x^{2015}+y^{2015}+z^{2015}+t^{2015}=0\)

16 tháng 11 2015

Ta có: A = 22015  -  22014  -  22013  -   ...  -  2 - 1

nên 2A =  22016  -  22015  -  22014  - ... - 22 - 2

2A - A = (22016  -  22015  -  22014  - ... - 22 - 2)  -  (22015  -  22014  -  22013  -   ...  -  2 - 1)

A = 22016  -  2.22015 + 1

A = 22016  -  22016 + 1 = 1

Vậy, 2015A = 20151 = 2015