Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
\(-20x^2+6x+20x^2+5x=25\)
\(\Rightarrow6x+5x=25\)
\(\Rightarrow11x=25\)
\(\Rightarrow x=\dfrac{25}{11}\)
b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
\(5y-2y^2+2y^2-2y=15\)
\(\Rightarrow5y-2y=15\)
\(\Rightarrow3y=15\)
\(\Rightarrow y=5\)
c)\(x\left(x+1\right)-\left(x+1\right)=35\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)
\(\Rightarrow x^2-1=35\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6;x=-6\)
d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)
\(x^3+x^2+x-x^3+x=0\)
\(\Rightarrow x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x=0;x=0-2=-2\)
Vậy \(x=0;x=-2\)
a, (2x+5)mũ 2=(x+2) mũ 2
=.> (2x+5) mũ 2-(x+2) mũ 2=0
=> (2x+5+x+2)x(2x+5-x-2)=0
=>(3x+7)x(x+3)=0
=>3x+7=0 hoặc x+3=0
3x+7=0=>x=-7/3
x+3=0 =>x=-3
vậy x=-7/3 hoặc x=-3
hok tot
\(a,x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ...
\(b,\left(5-2x\right)^2-16=0\)
\(\Rightarrow\left(5-2x\right)^2=16\)
\(\Rightarrow\left(5-2x\right)^2=4^2\)
\(\Rightarrow5-2x=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{9}\end{matrix}\right.\)
Vậy ...
\(c,x\left(x+3\right)-x^2-11=0\)
\(\Rightarrow x^2+3x-x^2-11=0\)
\(\Rightarrow3x-11=0\)
\(\Rightarrow3x=11\)
\(\Rightarrow x=\dfrac{11}{3}\)
Vậy ...
a)
\(3x^2-5x=0\Leftrightarrow x(3x-5)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ 3x-5=0\rightarrow x=\frac{5}{3}\end{matrix}\right.\)
b)
\(x^3-0,36x=0\Leftrightarrow x(x^2-0,36)=0\)
\(\Leftrightarrow x(x-0,6)(x+0,6)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x-0,6=0\\ x+0,6=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=0\\ x=0,6\\ x=-0,6\end{matrix}\right.\)
c)
\((5x+2)^2-(3x-1)^2=0\)
\(\Leftrightarrow (5x+2-3x+1)(5x+2+3x-1)=0\)
\(\Leftrightarrow (2x+3)(8x+1)=0\)
\(\Rightarrow \left[\begin{matrix} 2x+3=0\\ 8x+1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{-1}{8}\end{matrix}\right.\)
d)
\(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow x^2-2.5x+5^2=0\Leftrightarrow (x-5)^2=0\)
\(\Rightarrow x=5\)
e)
\(3(x+5)-x^2-5x=0\)
\(\Leftrightarrow 3(x+5)-x(x+5)=0\)
\(\Leftrightarrow (3-x)(x+5)=0\)
\(\Rightarrow \left[\begin{matrix} 3-x=0\rightarrow x=3\\ x+5=0\rightarrow x=-5\end{matrix}\right.\)
f)
\((x-1)^2-2(x-1)(3x+2)+(3x+2)^2=0\)
\(\Leftrightarrow [(x-1)-(3x+2)]^2=0\)
\(\Leftrightarrow (-2x-3)^2=0\Rightarrow -2x-3=0\Rightarrow x=\frac{-3}{2}\)
\(a,x^2-25-x-5=0\)
\(x^2-x-30=0\)
\(x^2+5x-6x-30=0\)
\(x\cdot\left(x+5\right)-6\cdot\left(x+5\right)=0\)
\(\left(x+5\right)\cdot\left(x-6\right)=0\)
\(\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}}\)
b) \(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(\Leftrightarrow\left(10x^2+9x\right)-\left(10x^2+13x-3\right)=8\)
\(\Leftrightarrow-4x+3=8\)
\(\Leftrightarrow-4x=5\Leftrightarrow x=\frac{-5}{4}\)