Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right)\) ĐKXĐ : \(x\ge0;x\ne-3;x\ne3\)
\(M=\frac{\left(\sqrt{x}+3\right)^2-\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)
\(M=\frac{x+6\sqrt{x}+9-x+6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{-3}\)
\(M=\frac{12\sqrt{x}}{\sqrt{x}+3}.\frac{1}{-3}\)
\(M=\frac{-4\sqrt{x}}{\sqrt{x}+3}\)
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-3\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
- Ta có : \(B=\frac{1}{\sqrt{x}-3}+\frac{1}{\sqrt{x}+3}\)
=> \(B=\frac{\sqrt{x}+3}{x-9}+\frac{\sqrt{x}-3}{x-9}\)
=> \(B=\frac{\sqrt{x}+3+\sqrt{x}-3}{x-9}=\frac{2\sqrt{x}}{x-9}\)
b, Ta có : \(A=\left(\sqrt{8}-\sqrt{12}\right)\left(\sqrt{2}+\sqrt{3}\right)\)
=> \(A=\sqrt{16}-\sqrt{24}+\sqrt{24}-\sqrt{36}\)
=> \(A=\sqrt{16}-\sqrt{36}=4-6=-2\)
c, - Để A = B khi : \(\frac{2\sqrt{x}}{x-9}=-2\)
=> \(2\sqrt{x}=18-2x\)
=> \(2x+2\sqrt{x}-18=0\)
=> \(\left(\sqrt{2x}\right)^2+2\sqrt{2x}.\frac{1}{\sqrt{2}}+\frac{1}{2}-\frac{37}{2}\)
=> \(\left(\sqrt{2x}+\frac{1}{\sqrt{2}}\right)^2=\frac{37}{2}\)
=> \(\left[{}\begin{matrix}x=\left(\frac{\sqrt{\frac{37}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\right)^2=\frac{19-\sqrt{37}}{2}\\x=\left(\frac{-\sqrt{\frac{37}{2}}-\frac{1}{\sqrt{2}}}{\sqrt{2}}\right)^2=\frac{19+\sqrt{37}}{2}\end{matrix}\right.\)
Vậy để A = B thì \(\left[{}\begin{matrix}x=\frac{19-\sqrt{37}}{2}\\x=\frac{19+\sqrt{37}}{2}\end{matrix}\right.\)
Câu a : ĐKXĐ : \(x\ge0\) và \(x\ne9\)
\(B=\dfrac{1}{\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
Câu b : \(A=\left(\sqrt{8}-\sqrt{12}\right)\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\sqrt{16}+\sqrt{24}-\sqrt{24}-\sqrt{36}\)
\(=\sqrt{16}-\sqrt{36}\)
\(=4-6=-2\)
Câu c : Để : \(A=B\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-2\)
\(\Leftrightarrow2\sqrt{x}=-2\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
\(\Leftrightarrow2\sqrt{x}=-2\left(x-9\right)\)
\(\Leftrightarrow2x+2\sqrt{x}-18=0\)
Tới khúc này chịu
a) DK de P xác dinh : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
b) \(P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{1-x}+\frac{\left(\sqrt{x}-2\right)^2+3\sqrt{x}-x}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x}}{1-\sqrt{x}}+\frac{-\sqrt{x}+4}{1-\sqrt{x}}\)
\(=\frac{4}{1-\sqrt{x}}\)
c) de P > o thì \(1-\sqrt{x}>0\Rightarrow\sqrt{x}< 1\Rightarrow0< x< 1\)