Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
a, Vì \(\left|3x-2y\right|\ge0;\left|3y-4z\right|\ge0\Rightarrow\left|3x-2y\right|+\left|3y-4z\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\3y-4z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\3y=4z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{9}\end{cases}\Leftrightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{9}}\)
\(\Leftrightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{27}=\frac{x-2y+3z}{8-24+27}=\frac{5}{11}\)
từ đây tìm x,y,z
b,Ta có: \(\frac{2x+3}{2}=\frac{3x-6}{5}\Rightarrow5\left(2x+3\right)=2\left(3x-6\right)\Rightarrow10x+15=6x-12\Rightarrow4x=-27\Rightarrow x=\frac{-27}{4}\)
Thay x=-27/4 vào \(\frac{3x-6}{5}=\frac{3x+3y+1}{3x}\), ta được:
\(\frac{3\cdot\left(\frac{-27}{4}\right)-6}{5}=\frac{3.\left(\frac{-27}{4}\right)+3y+1}{3.\left(\frac{-27}{4}\right)}\)
\(\Rightarrow\frac{-21}{4}=\frac{\frac{-77}{4}+3y}{\frac{-81}{4}}\Rightarrow\frac{-77}{4}+3y=\frac{1701}{16}\Rightarrow3y=\frac{2009}{16}\Rightarrow y=\frac{2009}{48}\)
Vậy x=-27/4,y=2009/48
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8
Ta được: x= 10.28/8=35
y= 6.28/8=21
z=24.28/8=84
1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)
Mà xyz = -108
\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)
\(\Leftrightarrow4k^3=-108\)
<=> k3 = -27
<=> k = -3
\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)
2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)
3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)
2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)
4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)
Mà xyz = 240
<=> 3k . 2/k . 4k = 240
<=> 24k = 240
<=> k = 10
\(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{10+9+8}=\frac{54}{27}=2\)
x/5=2=>x=10
y/3=2=>y=6
z/2=2=>z=4
b,áp dụng dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{3x-2y+2z}{6-6+12}=\frac{24}{12}=2\)
x/2=2=>x=4
y/3=2=>y=6
z/6=2=>z=12
mk đầu tiên nhé bạn
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
Do đó: x=20; y=30; z=42
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !
#)Giải :
1)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)
Vậy x = 2; y = 1; z = 3
2)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)
Vậy x = 6; y = 36; z = 18
3)Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)
Vậy x = 2,5; y = 1,5; z = 1
a, Thiếu đề
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=-\frac{24}{-4}=6\)
\(x=6;y=36;z=18\)
c, Ta có : \(3x-2y=4z\Leftrightarrow3x-2y-4z=0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y-4z}{6-2-12}=\frac{0}{-8}=0\)
\(x=y=z=0\)
b) Đặt \(x=\frac{y}{6}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=k\\y=6k\\z=3k\end{cases}}\)
Khi đó 2x - 3y + 4z = -24
<=> 2k - 3.6k + 4.3k = -24
=> 2k - 18k + 12k = -24
=> -4k = -24
=> k = 6
=> x = 1 ; y = 36 ; z = 18
c) Đặt \(\frac{x}{2}=y=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=k\\z=3k\end{cases}}\)
Khi đó 3x - 2y = 4z
<=> 3.2k - 2k = 4.3k
=> 6k - 4k = 12k
=> 2k = 12k
=> k = 0
=> x = y = z = 0