Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
\(A=\dfrac{\dfrac{21}{44}+\dfrac{3}{13}}{\dfrac{20}{77}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{6}+\dfrac{1}{4}}{\dfrac{5}{12}+\dfrac{5}{8}}\)
\(A=\dfrac{\dfrac{645}{1001}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\)
\(\Leftrightarrow A=\left(\dfrac{645}{1001}:\dfrac{645}{1001}\right)+\left(\dfrac{5}{12}:\dfrac{25}{24}\right)\)
\(A=1+\dfrac{2}{5}\)
\(A=\dfrac{7}{5}.\)
Vậy \(A=\dfrac{7}{5}.\)
có gì đó sai sai ở chỗ 5/7 thì phải . mik nghĩ đó 5/4 mới đúng chứ .
\(A=\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}+\dfrac{5}{8}-\dfrac{5}{6}}=\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{2}{4}+\dfrac{2}{8}-\dfrac{2}{6}}{\dfrac{5}{4}+\dfrac{5}{8}-\dfrac{5}{6}}=\dfrac{3\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}{5\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}+\dfrac{2\left(\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{6}\right)}{5\left(\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{7}\right)}=\dfrac{3}{5}+\dfrac{2}{5}=1\)
\(\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}\)+\(\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}+\frac{1}{4}-\frac{1}{3}\right)}\)
=\(\frac{3}{5}\)+\(\frac{1}{\frac{5}{2}}\)
=\(\frac{3}{5}\)+\(\frac{2}{5}\)
=1 !!!
Sửa đề:
\(A=\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
\(A=\dfrac{3}{5}.\dfrac{\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}}{\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}\right)}\)
\(A=\dfrac{3}{5}+\dfrac{1}{\dfrac{5}{2}}=\dfrac{3}{5}+\dfrac{2}{5}=1\)
Chúc bạn hcọ tốt!!!
a,
Đặt A = \(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(\Rightarrow\)2A= \(2.\left(\dfrac{1}{99.97}-\dfrac{1}{97.95}-\dfrac{1}{95.93}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\right)\)
\(\Rightarrow\)2A= \(2.\left(\dfrac{1}{99}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{95}+...+\dfrac{1}{3}-1\right)\)
2A= \(2.\left(\dfrac{1}{99}-1\right)\)
\(\Rightarrow\) A = \(\dfrac{1}{99}-1=\dfrac{-98}{99}\)
b, \(\dfrac{\dfrac{3}{7}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\)
= \(\dfrac{3.\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}{5.\left(\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{13}\right)}+\dfrac{2.\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8}\right)}{5.\left(\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{8}\right)}\)
= \(\dfrac{3}{5}+\dfrac{2}{5}=\dfrac{5}{5}=1\)
Chúc bn hc tốt <3
*Trả lời :
a) \(-\dfrac{3}{4}.5\dfrac{3}{13}-0,75.\dfrac{36}{13}\)
= \(-\dfrac{3}{4}.\dfrac{68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\dfrac{-68}{13}-\dfrac{3}{4}.\dfrac{36}{13}\)
=\(\dfrac{3}{4}.\cdot\left(\dfrac{-68}{13}-\dfrac{36}{13}\right)\)
=\(\dfrac{3}{4}.\left(-8\right)\)
= \(-6\)
b)\(4\dfrac{5}{9}:\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{41}{9}-\left(-\dfrac{5}{7}\right)+\dfrac{49}{9}:\left(-\dfrac{5}{7}\right)\)
=\(\left(\dfrac{41}{9}+\dfrac{49}{9}\right):\left(-\dfrac{5}{7}\right)\)
=\(\dfrac{90}{9}:\left(-\dfrac{5}{7}\right)\)
=\(10:\left(-\dfrac{5}{7}\right)\)
=\(-14\)
c)\(\left(-\dfrac{3}{5}+\dfrac{4}{9}\right):\dfrac{7}{11}+\left(-\dfrac{2}{5}+\dfrac{5}{9}\right):\dfrac{7}{11}\)
=\(\left(-\dfrac{3}{5}\right)+\dfrac{4}{9}:\dfrac{7}{11}+\left(-\dfrac{2}{5}\right)+\dfrac{5}{9}:\dfrac{7}{11}\)(áp dụng tính chất phá ngoặc )
=\(\left\{\left[-\dfrac{3}{5}+\left(-\dfrac{2}{5}\right)\right]+\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\right\}:\dfrac{7}{11}\)
=\(\left(-\dfrac{5}{5}+\dfrac{9}{9}\right):\dfrac{7}{11}\)
=\(\left(-1+1\right):\dfrac{7}{11}\)
\(=0:\dfrac{7}{11}\)
=0.
d)\(\dfrac{6}{7}:\left(\dfrac{3}{26}-\dfrac{3}{13}\right)+\dfrac{6}{7}:\left(\dfrac{1}{10}-\dfrac{8}{5}\right)\)
=\(\dfrac{6}{7}:\left[\dfrac{3}{26}+\left(-\dfrac{6}{26}\right)\right]+\dfrac{6}{7}:\left[\dfrac{1}{10}+\left(-\dfrac{16}{10}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{3}{26}\right)+\dfrac{6}{7}:\left(-\dfrac{3}{2}\right)\)
=\(\dfrac{6}{7}:\left[\left(-\dfrac{3}{26}\right)+\left(-\dfrac{39}{26}\right)\right]\)
=\(\dfrac{6}{7}:\left(-\dfrac{21}{13}\right)\)
=\(-\dfrac{26}{49}\)
1, \(x\left(x+\dfrac{2}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2, a, \(\left|x+\dfrac{4}{6}\right|\ge0\)
Để \(\left|x+\dfrac{4}{6}\right|\) đạt GTNN thì \(\left|x+\dfrac{4}{6}\right|=0\)
\(\Leftrightarrow x+\dfrac{4}{6}=0\Rightarrow x=\dfrac{-2}{3}\)
Vậy, ...
b, \(\left|x-\dfrac{1}{3}\right|\ge0\)
Để \(\left|x-\dfrac{1}{3}\right|\) đạt GTLN thì \(\left|x-\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow x-\dfrac{1}{3}=0\Rightarrow x=\dfrac{1}{3}\)
Vậy, ...
1)
a)
\(x\cdot\left(x+\dfrac{2}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{2}{3}\end{matrix}\right.\)
2)
a)
\(\left|x+\dfrac{4}{6}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x+\dfrac{4}{6}=0\Leftrightarrow x=\dfrac{-4}{6}\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(Min_{\left|x+\dfrac{4}{6}\right|}=0\text{ khi }x=\dfrac{-2}{3}\)
b)
\(\left|x-\dfrac{1}{3}\right|\ge0\)
Dấu \("="\) xảy ra khi \(x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(Min_{\left|x-\dfrac{1}{3}\right|}=0\text{ khi }x=\dfrac{1}{3}\)
A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)
\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)
\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)
=1-82/84
=2/84=1/42
\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)
\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)
\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)
Lời giải:
Ta có:
\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{4}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\) \(=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{1}{\frac{5}{2}}=\frac{3}{5}+\frac{2}{5}=\frac{5}{5}=1\)