Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a)
=\(\left(4-1+8\right)x^2=11x^2\)
b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)
c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
A=x2y3(15+23−34+1)=6760x2y3A=x2y3(15+23−34+1)=6760x2y3
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A+B=6760x2y3+14x8y7z2A+B=6760x2y3+14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(a,-x^4\left(yx\right)^2\left(-x\right)^2\left(-y\right)^3=x^8y^5\)
\(\dfrac{1}{2}ax^3\left(-xy\right)\left(-y\right)^2=\dfrac{1}{2}ax^4y^2\)
\(-\dfrac{4}{5}y\left(\dfrac{3}{2}x^2y\right)^4=-\dfrac{81}{20}x^8y^5\)
a: \(=\dfrac{-1}{2}xy^4\cdot\left(-2\right)\cdot x^3y=x^4y^5\)
Hệ số là 1
Phần biến là x4;y5
Bậc là 9
b: \(=\dfrac{169}{4}\cdot x^2y^2\cdot\dfrac{-4}{13}\cdot xy^2z^2=-13x^3y^4z^2\)
Hệ số là -13
Bậc là 9
c: \(=\dfrac{-1}{3}\cdot x^2y^3\cdot\dfrac{3}{2}x^3y^2\cdot6x^2y^4=-3x^7y^9\)
Hệ số là -3
Bậc là 16
a: \(A=3x^2y^3-5x^2+3x^3y^2\)
\(B=x^2y^3+\dfrac{5}{2}x^5y-5x^2y\)
b: \(A+B=4x^2y^3+5x^2+\dfrac{5}{2}x^5y+3x^3y^2-5x^2y\)
\(A-B=2x^2y^3-5x^2+3x^3y^2-\dfrac{5}{2}x^5y+5x^2y\)
c: Khi x=-1 và y=-1/3 thì \(A=3\cdot\left(-1\right)^2\cdot\dfrac{-1}{27}-5\cdot\left(-1\right)^2+3\cdot\left(-1\right)^3\cdot\dfrac{1}{9}\)
\(=-\dfrac{1}{9}-5-\dfrac{1}{3}=\dfrac{-49}{9}\)
a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
\(=2x^2y^3z^2-2y^4\)
Bậc của đa thức A là 7
Vậy...
b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)
\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)
\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)
\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)
Vậy...
a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)
\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)
P=\(A+B=x^2y^2-x^2-3\)
\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)
b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)
a) x6+x2y5+xy6+x2y5-xy6
= x6+(x2y5+x2y5)+(xy6-xy6)
= x6+2x2y5
b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2
= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4
= -\(\dfrac{1}{2}\)x2y3-z4
b đâu e
\(A=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\)
bth B đâu bạn ?