Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)
=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)
=> \(12x-36-8x+8-8x+8=0\)
=> \(-4x-20=0\)
=> \(x=-5\) ( TM )
Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)
b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
=> \(x-3=5\left(2x-3\right)\)
=> \(x-3-10x+15=0\)
=> \(-9x=-12\)
=> \(x=\frac{4}{3}\) ( TM )
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)
\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
\(\Leftrightarrow2-x+5x+5=15\)
\(\Leftrightarrow7+4x=15\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow Ptvn\)
\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-3-10x+15=0\)
\(\Leftrightarrow-9x+12=0\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow\frac{4}{3}\)
\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow6x-18-4x+4=4x-4\)
\(\Leftrightarrow2x-14=4x-4\)
\(\Leftrightarrow-2x=10\)
\(\Leftrightarrow x=-5\)
\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)
\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow3x-9+2x-4=x-1\)
\(\Leftrightarrow4x-12=0\)
\(\Leftrightarrow4x=12\)
\(\Leftrightarrow x=3\)
\(\Leftrightarrow Ptvn\)
Vậy .................................
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html
Mình cảm ơn trước nhaa
a) Đề ( \(x\ne\pm1\))
>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)
Vậy \(S=\varnothing\)
b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)
\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)
Vậy \(S=\left\{\frac{20}{3}\right\}\)
a) ĐKXĐ: \(x\ne-1;x\ne2\)
Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
⇔\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)
⇔\(x-2-5x-5+15=0\)
⇔\(-4x+8=0\)
⇔\(-4x=-8\)
⇔\(x=\frac{-8}{-4}=2\)(loại)
Vậy: x không có giá trị
b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)
Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
⇔\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)
⇔\(x-3-10x+15=0\)
⇔\(-9x+12=0\)
⇔\(-9x=-12\)
⇔\(x=\frac{-12}{-9}=\frac{4}{3}\)
Vậy: \(x=\frac{4}{3}\)
c) ĐKXĐ:\(x\ne3;x\ne1\)
Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)
⇔\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)
⇔\(\frac{6}{x-1}-\frac{8}{x-3}=0\)
⇔\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)
⇔\(6\left(x-3\right)-8\left(x-1\right)=0\)
⇔6x-18-8x+8=0
⇔-2x-10=0
⇔-2(x+5)=0
Vì 2≠0 nên x+5=0
hay x=-5
Vậy: x=-5
\( a)\dfrac{{x - 3}}{5} = 6 - \dfrac{{1 - 2x}}{2}\\ \Leftrightarrow 2\left( {x - 3} \right) = 60 - 5\left( {1 - 2x} \right)\\ \Leftrightarrow 2x - 6 = 60 - 5 + 10x\\ \Leftrightarrow 8x = - 61\\ \Leftrightarrow x = - \dfrac{{61}}{8}\\ b)\dfrac{{3x - 2}}{6} - 5 = \dfrac{{3 - 2\left( {x + 7} \right)}}{4}\\ \Leftrightarrow 2\left( {3x - 2} \right) - 60 = 3\left( { - 11 - 2x} \right)\\ \Leftrightarrow 6x - 4 - 60 = - 33 - 6x\\ \Leftrightarrow 12x = 31\\ \Leftrightarrow x = \dfrac{{31}}{{12}} \)
\(a.\frac{x-3}{5}=6-\frac{1-2x}{2}\\\Leftrightarrow \frac{2\left(x-3\right)}{10}=\frac{60}{10}-\frac{5\left(1-2x\right)}{10}\\ \Leftrightarrow2\left(x-3\right)=60-5\left(1-2x\right)\\\Leftrightarrow 2x-6=60-5+10x\\\Leftrightarrow 2x-10x=6+60-5\\\Leftrightarrow -8x=61\\ \Leftrightarrow x=-\frac{61}{8}\)
Vậy nghiệm của phương trình trên là \(-\frac{61}{8}\)
a) Ta có: \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Leftrightarrow\frac{7x}{8}-5x+45-\frac{20x+1,5}{6}=0\)
\(\Leftrightarrow\frac{21x}{24}-\frac{120x}{24}+\frac{1080}{24}-\frac{4\left(20x+1,5\right)}{24}=0\)
\(\Leftrightarrow-99x+1080-4\left(20x+1,5\right)=0\)
\(\Leftrightarrow-99x+1080-80x-6=0\)
\(\Leftrightarrow1074-179x=0\)
\(\Leftrightarrow179x=1074\)
hay x=6
Vậy: x=6
b) Ta có: \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)
\(\Leftrightarrow2-6x=\frac{6-5x}{3}\)
\(\Leftrightarrow\frac{3\left(2-6x\right)}{3}-\frac{6-5x}{3}=0\)
\(\Leftrightarrow6-18x-6+5x=0\)
\(\Leftrightarrow-13x=0\)
mà -13≠0
nên x=0
Vậy: x=0
c) Ta có: \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{30\left(-x+4\right)}{30}-\frac{10x}{30}+\frac{15\left(x-2\right)}{30}=0\)
\(\Leftrightarrow6\left(x+4\right)+30\left(4-x\right)-10x+15\left(x-2\right)=0\)
\(\Leftrightarrow6x+24+120-30x-10x+15x-30=0\)
\(\Leftrightarrow-19x+114=0\)
\(\Leftrightarrow-19x=-114\)
hay x=6
Vậy: x=6
d) Ta có: \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
\(\Leftrightarrow\frac{21\left(4x+3\right)}{105}-\frac{15\left(6x-2\right)}{105}-\frac{35\left(5x+4\right)}{105}-\frac{315}{105}=0\)
\(\Leftrightarrow84x+63-90x+30-175x-140-315=0\)
\(\Leftrightarrow-181x-362=0\)
\(\Leftrightarrow-181x=362\)
hay x=-2
Vậy: x=-2
e) Ta có: \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\frac{x+3}{4}=3-\frac{x+1}{2}-\frac{x+2}{3}\)
\(\Leftrightarrow\frac{3\left(x+3\right)}{12}-\frac{36}{12}+\frac{6\left(x+1\right)}{12}+\frac{4\left(x+2\right)}{12}=0\)
\(\Leftrightarrow3x+9-36+6x+6+4x+8=0\)
\(\Leftrightarrow13x-13=0\)
\(\Leftrightarrow13x=13\)
hay x=1
Vậy: x=1
a) x=1
b) x=1
c) x= -(245/81)
d) x= 1/27
e) x=3
g) x=4
cần gấp