Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác AEDM có: I là giao của AD và ME, I là trung điểm của AD và ME (gt)
\(\Rightarrow AEDM\)là hình bình hành (1) \(\Rightarrow AB//DM\)
Tương tự \(EBNC\)là hình bình hành (2) \(\Rightarrow AB//CN\)
Mặt khác, AB // DC (gt)
Do đó: \(M,N\in CD\)
b, Từ (1), ta được AE = MD
Từ (2), ta được EB = CN
ABCD là hình bình hành (gt) nên AB = DC
\(\Rightarrow AE+EB+AB=MD+CN+DC\)
\(\Rightarrow2AB=MN\Rightarrow MN=2CD\)
Chúc bạn học tốt.
A B C D E M I N K
mình vẽ hình không được đẹp lắm bạn cố nhìn nhé
GT: AI=AD; EI =IM; BK=KC;EK=KN
AB//DC
KL: M,N\(\in\)CD; MN=2DC
cmr: tứ giác AEDM là hình bình hành
ta có: AI=ID (gt)
EI=IM(gt)
=> tứ giác AEDM là hình bình hành (định lí 4)
=> AE// MD//DC
Vậy điểm M nằm trên cạnh DC
cmr: tứ giác EBNC là hình bình hành
ta có: BK=KC (gt)
EK=KN(gt)
=> tứ giác EBNC là hình bình hành
=> EB//NC//CD
vậy điểm N nằm trên cạnh CD
b) mình ko biết làm thông cảm
a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )