Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4+2005x^2+2004x+2005
=x^4-x+2005x^2+2005x+2005
=x(x^3-1)+2005(x^2+x+1)
=x(x-1)(x^2+x+1)+2005(x^2+x+1)
=(x^2+x+1)(x^2-x+2005)
b) \(9x^3+6x^2+x\)
\(=x\left(9x^2+6x+1\right)\)
\(=x\left(3x+1\right)^2\)
c) \(x^4+5x^3+15x-9\)
\(=\left(x^4-9\right)+5x\left(x^2+3\right)\)
\(=\left(x^2-3\right)\left(x^2+3\right)+5x\left(x^2+3\right)\)
\(=\left(x^2+3\right)\left(x^2-3+5x\right)\)
a) \(x^2-y^2+10y-25\)
\(=x^2-\left(y^2-10y+25\right)\)
\(=x^2-\left(y-5\right)^2\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
x4 + 2005x2 + 2004x + 2005
=x4-x+2005x2+2005x+2005
=x(x3-1)+2005.(x2+x+1)
=x(x-1)(x2+x+1)+2005.(x2+x+1)
=(x2+x+1)[x(x-1)+2005]
=(x2+x+1)(x2-x+2005)
\(x^2-2xy+5x-10y\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x+5\right)\left(x-2y\right)\)
\(x^2-2xy+5x-10y\)
\(=\left(x^2-2xy\right)+\left(5x-10y\right)\)
\(=x\left(x-2y\right)+5\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+5\right)\)
\(x-3\sqrt{x}+\sqrt{xy}-3y\)
\(=\left(x-3\sqrt{x}\right)+\left(\sqrt{xy}-3y\right)\)
\(=\sqrt{x}\left(\sqrt{x}-3\right)+y\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}+y\right)\)
a , 3x2 + 3y2 - 6xy - 12
= 3 ( x2 + y2 - 2xy - 4 )
= 3 ( x - y )2 - 22
= 3 ( x - y + 2 ) ( x - y - 2 )
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
a, ta có : \(x^4+2005x^2+2004x+2005\)
=\(x^4-x+2005x^2+2005x+2005\)
=\(x\left(x-1\right)\left(x^2+x+1\right)+2005\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^2-x+2005\right)\)
b, ta có \(-x^2-10y^2+6xy-2x+10y+9\)
=\(-\left(x^2+1+2x-6xy+9y^2-6y\right)-y^2+4y-4+13\)=\(13-\left(x-3y+1\right)^2-\left(y-2\right)^2\le13\forall x\)
Vậy Max=13 \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)