Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chú ý : Bài của bạn cần phải có điều kiện a,b > 0
\(\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}=\frac{\left|a\right|}{\sqrt{b}}+\frac{\left|b\right|}{\sqrt{a}}=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\)(1)
Ta xét : \(A=\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)=\left(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\right)+\left(a+b\right)\)
Áp dụng bất đẳng thức Cauchy được : \(\frac{a\sqrt{a}}{\sqrt{b}}+\frac{b\sqrt{b}}{\sqrt{a}}\ge2\sqrt{\frac{ab\sqrt{ab}}{\sqrt{ab}}}=2\sqrt{ab}\)
\(\Rightarrow A\ge a+b+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Rightarrow\left(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\right)\left(\sqrt{a}+\sqrt{b}\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{a}}\ge\sqrt{a}+\sqrt{b}\) (2)
Từ (1) và (2) ta có đpcm
a/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2cabc+bca≥2abc.bca=2c
Tương tự
abc+cab≥2babc+cab≥2b
bca+cab≥2abca+cab≥2a
Cộng các vế của BĐT
2(abc+bca+cab)≥2(1a+1b+1c)2(abc+bca+cab)≥2(1a+1b+1c)
↔abc+bca+cab≥1a+1b+1c↔abc+bca+cab≥1a+1b+1c
b/ Áp dụng BĐT Cô-si cho các số dương ta được
abc+bca≥2√abc.bca=2babc+bca≥2abc.bca=2b
Tương tự
abc+cab≥2aabc+cab≥2a
bca+cab≥2cbca+cab≥2c
Cộng các vế của BĐT
2(abc+bca+cab)≥2(a+b+c)2(abc+bca+cab)≥2(a+b+c)
↔abc+bca+cab≥a+b+c
\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=4\)
\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)
\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)
Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại
Bạn ơi cho mình hỏi tại sao \(\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\)lại lớn hơn hoặc bằng \(\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}\)vậy ạ?
Cách giải khác đây:
Áp dụng bđt bunhia copxki ta có \(A^2\le6\left(a+b+c\right)=6\)vì a+b+c=1
nên \(A\le\sqrt{6}\)
Dấu = xảy ra <=>a=b=c=1/3
\(\sqrt{3b\left(a+2b\right)}\le\frac{3b+\left(a+2b\right)}{2}\); \(\sqrt{3a\left(b+2a\right)}\le\frac{3a+\left(b+2a\right)}{2}\)
=> M\(\le a\frac{a+5b}{2}+b\frac{5a+b}{2}\)=\(\frac{a^2+b^2+10ab}{2}\)\(\le\frac{6\left(a^2+b^2\right)}{2}\)( áp dụng 2ab\(\le a^2+b^2\))=3(a2+b2)\(\le\)6
dấu = khi a =b =1
cho mình xin đề bài với cho hỏi tại sao có
\(\left(a-b\right)^2\left(17a^2+10ab+9b^2\right)\ge0\)
để suy ra \(\sqrt{2a\left(a+b\right)^3}\le\frac{5}{2}a^2+\frac{3}{2}b^2\)
#Thắng: hình như là Ireland MO 2000 hay 2002 j đó , nãy vừa thấy trên fb <(")