Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co: B= 1 + 3 +32 + 33 + ....... + 399
= (1 + 3) + 32(1+3) + 34(1 + 3) + ......... + 398(1+3)
= (1 + 3)(1 + 32 +34 + ......... + 398)
= 4(1 + 32 +34 + ........... + 398) \(⋮\)4
Vay B \(⋮\)4
k cho mk nha
B=(1+3)+(32+33)+...+(398+399)
=(1+3)+32(1+3)+...+398(1+3)
=4+32.4+.....+398.4
=4.(1+32+...+398)
vì 4 chia hết cho 4 => 4.(1+32+...+398) chia hết cho 4 => B chia hết cho 4 (điều phải chứng minh)
a, mình nghĩ là \(16^5+2^{15}\)
ta có : \(16^5=2^{20}\)
=>\(16^5+2^{15}=2^{20}+2^{15}\)
=\(2^{15}.2^5+2^{15}\)
\(=2^{15}.\left(2^5+1\right)\)
\(=2^{15}.33\)
mà \(2^{15}.33⋮33\)
\(=>16^5+2^{15}⋮33\)
buổi đêm đăng câu hỏi , cần gấp , lamf đúng , trình bày , đào đâu ra
D=1+.....+4^11chia het cho 5
D=(1+4)+(4^2+4^3)+......+(4^10+4^11)chia het cho 5
D=(1+4)+4^2(1+4)+....+4^10(1+4)chia het cho 5
D=5+4^2.5+....+4^10.5chia het cho 5
D=5(4^2+4^4+....+4^10)chia het cho 5
suy ra Dchia het cho 5 (do 5 chia het cho 5)
vậy Dchia het cho 5
Số lượng số hạng của C là :
( 98 - 0 ) : 1 + 1 = 99 ( số )
Mà 99 \(⋮3\Rightarrow\)ta nhóm 3 số liền nhau thành 1 nhóm như sau :
\(C=1+4+4^2+4^3+4^4+...+4^{98}\)
\(C=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{96}+4^{97}+4^{98}\right)\)
\(C=21+4^3.\left(1+4+4^2\right)+...+4^{96}.\left(1+4+4^2\right)\)
\(C=21+4^3.21+...+4^{96}.21\)
\(C=21.\left(1+4^3+..+4^{96}\right)⋮21\left(đpcm\right)\)
1+4+4^2=21
mấy cái sau rút ra thì đc thui