K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

        4x2+4x=8y3-2z+4

<=> 2x2+2x=4y3-z+2

<=>2x(x+1)=4y3-2z+2

Ta có : VT chia hết cho 4 =>VP chia hết cho 4 , 4y3 chia hết cho 4 

                                                                      2z chia hết cho 4 => z chia hết cho 2 , mà 2 ko chia hết cho 2 => pt trên không có No nguyên

9 tháng 10 2018

4x2 + 4x = 8y3 - 2z2 +4
=> 4x(x+1) = 8y3 -2(z2-2)
Nhân xét : vế trái chia hết cho 8( vì x(x+1) chia hết cho 2) ; vế phải có 8y3 chia hết cho 8 => 2(z2-2) chia hết cho 8
=> (z2-2) chia hết cho 4 (1) => z chẵn => z2 chia hết cho 4 => (z2-2) không chia hết cho 4 (2)
(1) và (2) => pt đã cho không có nghiệm nguyên

28 tháng 8 2020

4x2 + 2y2 + 2z2 - 4xy + 2yz - 4xz - 6y - 10z + 34 = 0

<=> [ ( 4x2 - 4xy + y2 ) - 4xz + 2yz + z2 ] + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0

<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0

<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0

\(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Thế vào S ta được :

S = ( x - 4 )2020 + ( y - 3 )2020 + ( z - 5 )2020

    = ( 4 - 4 )2020 + ( 3 - 3 )2020 + ( 5 - 5 )2020

    = 0 + 0 + 0

    = 0