Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác IHE và tam giác BHA có :
góc IHE = góc BHA = 90
IH = HB do I đx B qua H (gt)
AH = HE do A đx E qua H (gT)
=> tam giác IHE = tam giác BHA (2cgv)
=> IE = AB (đn)
góc EIH = góc HBA (đn) mà 2 góc này slt => IE // AB (đl)
=> IEBA là hình bnhf hành (dh/9
AB _|_ AC (gt)
IE // AB (cmt)
=> IE _|_ AC (đl)
a) Xét ΔAFH và ΔADB có
\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)
\(\widehat{BAD}\) chung
Do đó: ΔAFH∼ΔADB(g-g)
b) Xét ΔBHF và ΔCHE có
\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)
\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)
Do đó: ΔBHF∼ΔCHE(g-g)
\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)
hay \(BH\cdot HE=CH\cdot HF\)(đpcm)
a) Tam giác vuông EBD và tam giác vuông ECA có góc E chung nên đồng dạng. Suy ra EB/EC = ED/EA
=> EA.EB = ED.EC
Xét tam giác EAD và tam giác ECB có góc E chung và EA/EC = ED/EA nên đồng dạng theo trường hợp c-g-c, suy ra góc EAD = góc ECB
b) PQ là đường trung bình của tam giác BDH nên PQ//BD mà BD vuông góc với DC nên PQ vuông góc DC. Vậy Q là trực tâm của tam giác PDC. Suy ra CQ vuông góc PD
Nối H với M , K với M
có : BD vuông góc với AC ( BD là đường cao )
CK vuông góc với AC ( gt)
=> BD // CK ( từ vuông góc đến //)
CÓ CE vuông góc với AB ( CE là đường cao )
BK vuông góc với AB ( gt)
=> CE // BK ( từ vuông góc đến //)
Xét tam giác BHC và tam giác CKB có
góc HBC = góc KCB( 2 góc so le trong do BD // CK )
BC chung
góc HCB = góc KBC ( 2 góc so le trong do CE // BK )
=> tam giác BHC = tam giác CKB ( g-c-g)
=> BH = CK( 2 cạnh tương ứng )
Xét tam giác BHM và tam giác CKMcó
BH = CK ( cmt)
góc HBM = góc KCM (2 góc so le trong do BD // CK )
BM = CM ( M là trung điểm của BC )
=> tam giác BHM = tam giác CKM (c-g-c)
=> góc BMH = góc CMK ( 2 góc tương ứng )
mà góc BMH + góc HMC =180 độ ( 2 góc kề bù)
=> góc CMK + góc HMC =180 độ
hay góc HMK = 180 độ
=> H,M,K thẳng hàng
vậy H,M,K thẳng hàng