Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm x
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}=x\)
\(\Rightarrow1-\frac{1}{100}=x\)
\(\Rightarrow x=\frac{99}{100}\)
\(2.Tính\)
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
học vui!!
Xin lỗi nha. Bài 1 mk làm sai. Lại nè:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=x\)
\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)=x\)
\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=x\)
\(\frac{1}{3}.\left(1-\frac{1}{100}\right)=x\)
\(\frac{1}{3}\cdot\frac{99}{100}=x\)
\(\frac{33}{100}=x\)
c) x=-2 nha
d) =\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+......+\(\frac{1}{11.12}\)
=\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+.....+\(\frac{1}{11}\)-\(\frac{1}{12}\)
=\(\frac{1}{5}\)-\(\frac{1}{12}\)= \(\frac{7}{60}\)
\(\frac{3}{5.6}+\frac{3}{6.7}+......+\frac{3}{11.12}=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{11.12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+.....+\frac{1}{11}-\frac{1}{12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\left(\frac{1}{5}-\frac{1}{12}\right)=\frac{1}{6}X\)
\(\Rightarrow3.\frac{7}{60}=\frac{1}{6}X\)
\(\Rightarrow\frac{21}{60}=\frac{1}{6}X\)
\(\Rightarrow X=\frac{21}{60}\div\frac{1}{6}=\frac{21}{10}\)
Vậy \(X=\frac{21}{10}\)
Tìm x biết:
\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)
\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)
\(\frac{x}{3}=\frac{5}{6}\)
\(x=\frac{5}{6}.3\)
\(x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)
\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{199}{230}\)
\(x=\frac{199}{230}-\frac{13}{23}\)
\(x=\frac{3}{10}\)
Vậy \(x=\frac{3}{10}\)
Bài 2: tính
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{5}-\frac{1}{11}\)
\(=\frac{6}{55}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2:
1/30+1/42+1/56+1/72+1/90+1/110
=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1/5-1/11=6/55
b)1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50
=49/50
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{7}{60}\)
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)
\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
Ta có:
A = \(\frac{1}{5.6}\)+ \(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
Bạn xem lời giải của mình nhé:
Giải:
\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)
Chúc bạn học tốt!
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(A=\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{5}...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}\)
\(A=\frac{7}{60}\)
A = \(\frac{1}{5.6}+\frac{1}{6.7}+...+\)\(\frac{1}{10.11}+\frac{1}{11.12}\)
A = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\)\(\frac{1}{11}-\frac{1}{12}\)
A = \(\frac{1}{5}-\frac{1}{12}\)
A = \(\frac{7}{60}\)
mình biến đởi phần trong |......| rồi bạn thay vào nha
1/30 + 1/42 + 1/56 + 1/72 +1/ 90 + 1/110 + 1/132
=1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10 +1/ 10.11
=1/5 -1/6 +1/6 - 1/7 +......+1/10 - 1/11
=1/5 - 1/11=11/55 - 5/55 =6/ 55
thay vào |....|=> |6/55 - x | = 2/3 => mở ra 2 trường hợp mà tính nha
chúc hok tốt
=>(1/5.6+1/6.7+1/7.8+1/9.10+1/10.11+1/11.12)-x=2/3
=>(1/5-1/+1/6-1/7+...+1/11-1/12)-x=2/3
=>(1/5-1/12)-x=2/3
=>7/60-x=2/3
=>x=7/60-2/3
=>x=-11/20