Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H có sin B=AH/AB
nên AB=5,96(cm)
=>BH=2,52(cm)
Xét ΔAHC vuông tại H có sin C=AH/AC
nên AC=7,05(cm)
=>HC=4,53(cm)
BC=2,52+4,53=7,05(cm)
C=7,05+7,05+5,96=20,06(cm)
b: góc A=180-58-40=82 độ
Xét ΔBHA vuông tại H có tan A=BH/HA
nên HA=0,56(cm)
Xét ΔBHC vuông tại H có tan C=BH/HC
nên HC=4,77(cm)
=>AC=5,33(cm)
\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)
A B C D E
\(\cos^2\widehat{A}=\frac{AE^2}{AC^2}=\frac{AD^2}{AB^2}\)
Xét tam giác ADE và tam giác ABC có :
\(\frac{AD}{AB}=\frac{AE}{AC}\) \(\left(=\cos\widehat{A}\right)\)
\(\widehat{A}\) là góc chung
Do đó : \(\Delta ADE~\Delta ABC\left(c-g-c\right)\)
Mà tỉ số diện tích của hai tam giác đồng dạng bằng bình phương tỉ số đồng dạng nên
\(\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\left(\frac{AE}{AC}\right)^2=\cos^2\widehat{A}\)\(\Rightarrow\)\(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) ( đpcm )
làm tạm 1 câu :v
\(S_{ADE}+S_{BCDE}=S_{ABC}.1=S_{ABC}\left(\sin^2\widehat{A}+\cos^2\widehat{A}\right)\)
\(\Rightarrow\)\(S_{ADE}+S_{BCDE}=S_{ABC}.\sin^2\widehat{A}+S_{ABC}.\cos^2\widehat{A}\)
\(\Leftrightarrow\)\(S_{BCDE}=S_{ABC}.\sin^2\widehat{A}\) ( do \(S_{ADE}=S_{ABC}.\cos^2\widehat{A}\) )
A B C D E H K O a) Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
Suy ra tứ giác ADHE nội tiếp
Xét tứ giác BEDC có \(\widehat{BDC}=\widehat{BEC}=90^0\)
Suy ra tứ giác BEDC nội tiếp
b) Ta có tứ giác BEDC nội tiếp\(\Rightarrow\widehat{AED}=\widehat{ACB}\)
Xét △ADE và △ABC có
\(\widehat{AED}=\widehat{ACB}\)(cmt)
\(\widehat{A}\) chung
Suy ra △ADE \(\sim\) △ABC(g-g)\(\Rightarrow\frac{DE}{BC}=\frac{AD}{AB}=cos_{\widehat{BAD}}=cos_{45^0}=\frac{\sqrt{2}}{2}\)
c) Vẽ đường kính AOK
Ta có \(\widehat{AED}=\widehat{ACB}\)\(\Leftrightarrow\)\(\widehat{AED}+\widehat{EAO}=\widehat{ACB}+\widehat{BAK}=\frac{sd\stackrel\frown{AB}}{2}+\frac{sd\stackrel\frown{BK}}{2}=\frac{sd\stackrel\frown{AB}+sd\stackrel\frown{BK}}{2}=\frac{sd\stackrel\frown{AK}}{2}=\frac{180^0}{2}=90^0\Rightarrow\)OA⊥DE
Ta đặt : \(AB=20a\) ; \(AC=21a\)
Áp dụng ĐL 4 trong hệ thức lượng giác ta có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}< =>\dfrac{1}{420^2}=\dfrac{1}{2o^2a^2}+\dfrac{1}{21^2a^2}< =>\dfrac{1}{420^2}=\dfrac{29^2}{420^2a^2}< =>\) \(420^2a^2=29^2420^2< =>420a=29.420< =>420a=12180=>a=29\)
=> \(AB=20.29=580\left(\text{đ}v\text{dd}\right)\)
\(=>AC=21.29=609\left(\text{đ}v\text{dd}\right)\)
Áp dụng Đ lí py - ta - go ta có :
\(BC^2=AB^2+AC^2=>BC=\) \(\sqrt{\left(AB^2+AC^2\right)}=\sqrt{\left(580^2+609^2\right)}=841\left(\text{đ}v\text{dd}\right)\)
=> \(Chu-vi-\Delta ABC-l\text{à}:\)
\(C_{\Delta ABC}=AB+AC+BC=580+609+841=2030\left(\text{đ}v\text{dd}\right)\)
A B C E D
Sửa lại đề nha : CMR : \(S_{ADE}=S_{ABC}.cos^2A\)
-------Lời giải-------
Xét tam giác ADB và tam giác AEC có :
\(\widehat{BAC}\) chung
\(\widehat{ADB}=\widehat{AEC}=\left(90^O\right)\)
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(TH3\right)\)
\(\Rightarrow\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
Xét tam giác ADE và tam giác ABC có :
\(\left\{{}\begin{matrix}\dfrac{AD}{AE}=\dfrac{AB}{AC}\left(cmt\right)\\\widehat{BAC}chung\end{matrix}\right.\)\(\Rightarrow\Delta ADE\sim\Delta ABC\)
\(\Rightarrow\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2\)
\(\Rightarrow S_{ADE}=S_{ABC}.cos^2A\)