Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
Áp dụng HTL tam giác AMC vuông tại M và ANB vuông tại N có
\(\left\{{}\begin{matrix}AM^2=AD\cdot AC\left(1\right)\\AN^2=AE\cdot AB\left(2\right)\end{matrix}\right.\)
Vì \(\left\{{}\begin{matrix}\widehat{AEC}=\widehat{ADB}=90^0\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEC\sim\Delta ADB\left(g.g\right)\Rightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\)
\(\Rightarrow AE\cdot AB=AC\cdot AD\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow AM^2=AN^2\Rightarrow AM=AN\\ \RightarrowĐpcm\)
Ta có: \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\left(1\right)\)
\(\Delta ANB\) vuông tại Ncó \(NE\bot AB\Rightarrow AN^2=AE.AB\left(2\right)\)
Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)
Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\left(3\right)\)
Từ (1),(2) và (3) \(\Rightarrow AM^2=AN^2\Rightarrow AM=AN\Rightarrow\Delta AMN\) cân tại A
\(\Rightarrow\angle AMN=\angle ANM\)