Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1\cdot2}+\frac{2}{2\cdot4}+\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+...+\frac{10}{46\cdot56}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{46}-\frac{1}{56}\)
\(A=1-\frac{1}{56}\)
\(A=\frac{55}{56}\)
\(B=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{23\cdot27}\)
\(B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\)
\(B=\frac{1}{3}-\frac{1}{27}\)
\(B=\frac{8}{27}\)
\(C=\frac{4}{3\cdot6}+\frac{4}{6\cdot9}+\frac{4}{9\cdot12}+...+\frac{4}{99\cdot102}\)
\(C=\frac{4}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{99\cdot102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\left(\frac{1}{3}-\frac{1}{102}\right)\)
\(C=\frac{4}{3}\cdot\frac{33}{102}\)
\(C=\frac{22}{51}\)
1)C= 1/5+1/10+1/20+1/40+...+1/1280
\(=\frac{1}{5}\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)\)
Đặt cái trong ngoặc là A ta có:\(2A=2+1+...+\frac{1}{2^7}\)
\(2A-A=\left(2+1+...+\frac{1}{2^7}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^8}\right)\)
\(A=2-\frac{1}{2^8}\).Thay A vào ta được:\(C=\frac{1}{5}\left(2-\frac{1}{2^8}\right)=\frac{1}{5}\cdot\frac{511}{256}=\frac{511}{1280}\)
2)D= 2/1*3+2/3*5+2/5*10+2/7*9+2/9*11+2/11*18+2/13*15
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
3)E= 4/3*7+4/7*11+4/11*15+4/15*19+4/19*23+4/23*27
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
4)G= 1/2+1/6+1/12+1/20+1/30+1/42+...+1/110
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}\)
\(=\frac{10}{11}\)
5)H= 3/1*2+3/2*3+3/3*4+3/4*5+...+3/9*10
\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=3\left(1-\frac{1}{10}\right)\)
\(=3\times\frac{9}{10}\)
\(=\frac{27}{10}\).Lần sau bạn đăng ít một thôi nhé
`@` `\text {Ans}`
`\downarrow`
`a)`
\(\dfrac{1}{2}-\dfrac{5}{6}+\dfrac{11}{33}-\dfrac{35}{40}\)
`=`\(\dfrac{1}{2}-\dfrac{5}{6}+\dfrac{1}{3}-\dfrac{7}{8}\)
`=`\(\dfrac{12}{24}-\dfrac{20}{24}+\dfrac{8}{24}-\dfrac{21}{24}\)
`= -21/24 = -7/8`
`b)`
\(\dfrac{2}{3}\cdot1\dfrac{3}{4}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{2}{3}\cdot\dfrac{7}{4}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{7}{6}-\dfrac{8}{9}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(\dfrac{5}{18}-\dfrac{17}{51}-\dfrac{1}{5}\)
`=`\(-\dfrac{1}{18}-\dfrac{1}{5}=-\dfrac{23}{90}\)
`c)`
\(\dfrac{1}{2}\cdot2-2\dfrac{5}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(1-\dfrac{19}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(-\dfrac{12}{7}+\dfrac{6}{4}-\dfrac{10}{15}\)
`=`\(-\dfrac{3}{14}-\dfrac{10}{15}=-\dfrac{37}{42}\)
`d) `
\(\dfrac{1}{6}\cdot\dfrac{1}{11}+\dfrac{4}{11}\cdot\left(-\dfrac{1}{6}\right)+\dfrac{8}{11}\cdot\dfrac{1}{6}+\dfrac{1}{6}\cdot\dfrac{6}{11}\)
`=`\(\dfrac{1}{6}\cdot\left(\dfrac{1}{11}-\dfrac{4}{11}+\dfrac{8}{11}+\dfrac{6}{11}\right)\)
`=`\(\dfrac{1}{6}\cdot\left(\dfrac{1-4+8+6}{11}\right)\)
`=`\(\dfrac{1}{6}\cdot1=\dfrac{1}{6}\)
`e)`
\(-17\cdot\left(-23\right)+\left(-53\right)\cdot17+17\cdot14+17\cdot\left(-24\right)\)
`= 17*(23-53+14-24)`
`= 17*(-40)`
`= -680`
`f)`
\(-19\cdot218+\left(-82\right)\cdot19-533\cdot19+\left(-19\right)\cdot167\)
`= 19*(-218-82-533-167)`
`= 19*(-1000)`
`= -19000`
`g)`
\(\dfrac{2}{5}+\dfrac{3}{8}-\dfrac{11}{44}+\dfrac{9}{16}\)
`=`\(\dfrac{2}{5}+\dfrac{3}{8}-\dfrac{1}{4}+\dfrac{9}{16}\)
`=`\(\dfrac{31}{40}-\dfrac{1}{4}+\dfrac{9}{16}\)
`=`\(\dfrac{21}{40}+\dfrac{9}{16}=\dfrac{87}{80}\)
`h)`
\(\dfrac{4}{10}-1\dfrac{5}{6}\cdot2+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{4}{10}-\dfrac{11}{6}\cdot2+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{4}{10}-\dfrac{11}{3}+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(-\dfrac{49}{15}+\dfrac{7}{8}-\dfrac{1}{9}\)
`=`\(-\dfrac{287}{120}-\dfrac{1}{9}=-\dfrac{901}{360}\)
`i )`
\(3\cdot\dfrac{1}{5}-\dfrac{2}{8}-\dfrac{12}{36}+\dfrac{15}{9}\)
`=`\(\dfrac{3}{5}-\dfrac{1}{4}-\dfrac{1}{3}+\dfrac{15}{9}\)
`=`\(\dfrac{7}{20}-\dfrac{1}{3}+\dfrac{15}{9}\)
`=`\(\dfrac{1}{60}+\dfrac{15}{9}=-\dfrac{33}{20}\)
`k)`
\(\dfrac{6}{8}\cdot3\dfrac{1}{2}+4\dfrac{2}{3}-\dfrac{11}{55}+\dfrac{17}{51}\)
`=`\(\dfrac{3}{4}\cdot\dfrac{7}{2}+\dfrac{14}{3}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{21}{8}+\dfrac{14}{3}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{175}{24}-\dfrac{1}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{851}{120}+\dfrac{17}{51}=\dfrac{297}{40}\)
`l )`
\(\dfrac{1}{3}\cdot3\dfrac{1}{2}-4\dfrac{2}{5}-\dfrac{26}{78}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\cdot\dfrac{7}{2}-\dfrac{22}{5}-\dfrac{1}{3}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\left(\dfrac{7}{2}-1\right)-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{1}{3}\cdot\dfrac{5}{2}-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(\dfrac{5}{6}-\dfrac{22}{5}+\dfrac{17}{51}\)
`=`\(-\dfrac{107}{30}+\dfrac{17}{51}=-\dfrac{97}{30}\)
P/s: Bạn tách bài ra hỏi nhé! Và ghi đề rõ ràng chứ đừng ghi ntnay, nhiều bạn nhìn vào rất khó nhìn!
`# \text {KaizulvG}`
a; \(\dfrac{3}{11}\) + \(\dfrac{5}{-9}\) + \(\dfrac{4}{11}\) - \(\dfrac{4}{9}\) + \(\dfrac{3}{17}\) + \(\dfrac{15}{11}\)
= (\(\dfrac{3}{11}\) + \(\dfrac{4}{11}\) + \(\dfrac{15}{11}\)) - (\(\dfrac{5}{9}\) + \(\dfrac{4}{9}\)) + \(\dfrac{3}{17}\)
= 2 - 1 + \(\dfrac{3}{17}\)
= 1 + \(\dfrac{3}{17}\)
= \(\dfrac{20}{17}\)
c; N = \(\dfrac{\dfrac{5}{7}-\dfrac{5}{9}-\dfrac{5}{11}}{\dfrac{15}{7}+\dfrac{15}{9}+\dfrac{15}{11}}\)
Phải là - \(\dfrac{5}{7}\) chỗ tử số mới đúng em nhé!
a)\(1-2+3-4+5-6+7-8+8-9+9-10\)
=\(\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+\left(8-9\right)+\left(9-10\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(=\left(-1\right).6\)
\(=-6\)
b)\(1-2+3-4+...+99-100\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)\)}\(\left[\left(100-1\right):1+1\right]:2=50\)(cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)} 50 số (-1)
\(=\left(-1\right).50\)
\(=-50\)
c)\(1-3+5-7+9-11+13-15\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\left(13-15\right)\)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+\left(-2\right)\)
\(=\left(-2\right).4\)
\(=-8\)
d)\(1-3+5-7+...-99+101\) (Đối với bài này, có vẻ đề sai, mình đã sửa lại rồi
\(=\left(1-3\right)+\left(5-7\right)+...+\left(97-99\right)+101\) } \(\left[\left(99-1\right):2+1\right]:2=25\)(cặp)
\(=\left(-2\right)+\left(-2\right)+\left(-2\right)+...+\left(-2\right)\) } 25 số (-2)
\(=\left(-2\right).25\)
\(=-50\)
e)\(-1-2-3-4-...-99-100\)
\(=\left(-1\right)+\left(-2\right)+\left(-3\right)+...+\left(-99\right)+\left(-100\right)\)
\(=\left[\left(-1\right)+\left(-100\right)\right]+\left[\left(-2\right)+\left(-99\right)\right]+...+\left[\left(-51\right)+\left(-50\right)\right]\) } \(\left[\left(100-1\right):1+1\right]:2=50\)(cặp) (phần này của đề bài, không thay được như (-100) hoặc (-1))
\(=\left(-100\right)+\left(-100\right)+\left(-100\right)+...+\left(-100\right)\)} 50 số (-100)
\(=\left(-100\right).50\)
\(=-5000\)
a) 1+3+5+7+9+11+13+15+17+19
= ( 1 + 19 ) + ( 3 + 17 ) + ( 5 + 15 ) + ( 7 + 13 ) + ( 9 + 11 )
= 20 + 20 + 20 + 20 + 20
= 20 x 5
= 100
Bài 1:
a; \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{7}{21}\) + (- \(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= \(\dfrac{5}{18}\) + \(\dfrac{8}{19}\) - \(\dfrac{1}{3}\) -\(\dfrac{10}{36}\) + \(\dfrac{11}{19}\) + \(\dfrac{1}{3}\) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{10}{36}\)) + (\(\dfrac{8}{19}\) + \(\dfrac{11}{19}\)) - (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) - \(\dfrac{5}{8}\)
= (\(\dfrac{5}{18}\) - \(\dfrac{5}{18}\)) + \(\dfrac{19}{19}\) - 0 - \(\dfrac{5}{8}\)
= 0 + 1 - \(\dfrac{5}{8}\)
= \(\dfrac{3}{8}\)
b; \(\dfrac{1}{13}\) + (\(\dfrac{-5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\)) - (\(\dfrac{12}{17}\) - \(\dfrac{5}{18}\) + \(\dfrac{7}{5}\))
= \(\dfrac{1}{13}\) - \(\dfrac{5}{18}\) - \(\dfrac{1}{13}\) + \(\dfrac{12}{17}\) - \(\dfrac{12}{17}\) + \(\dfrac{5}{18}\) - \(\dfrac{7}{5}\)
= (\(\dfrac{1}{13}\) - \(\dfrac{1}{13}\)) + (\(\dfrac{12}{17}\) - \(\dfrac{12}{17}\)) + (-\(\dfrac{5}{18}\) + \(\dfrac{5}{18}\)) - \(\dfrac{7}{5}\)
= 0 + 0 + 0 - \(\dfrac{7}{5}\)
= - \(\dfrac{7}{5}\)
Bài 1 c;
\(\dfrac{15}{14}\) - (\(\dfrac{17}{23}\) - \(\dfrac{80}{87}\) + \(\dfrac{5}{4}\)) + (\(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\))
= \(\dfrac{15}{14}\) - \(\dfrac{17}{23}\) + \(\dfrac{80}{87}\) - \(\dfrac{5}{4}\) + \(\dfrac{17}{23}\) - \(\dfrac{15}{14}\) + \(\dfrac{1}{4}\)
= (\(\dfrac{15}{14}-\dfrac{15}{14}\)) + (\(-\dfrac{17}{23}+\dfrac{17}{23}\)) - (\(\dfrac{5}{4}\) - \(\dfrac{1}{4}\)) + \(\dfrac{80}{87}\)
= 0 + 0 - 1 + \(\dfrac{80}{87}\)
= - \(\dfrac{7}{87}\)
a) \(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}-\frac{1}{8}+\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\)
\(=\frac{1}{2}-\frac{1}{14}=\frac{3}{7}\)
b) Ta có : A = \(\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{99.100}\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)