K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

ĐKXĐ \(x\ge0\)

Pt 

<=> \(\sqrt{x+3}\left(\sqrt{x}+1\right)=x+\sqrt{x}+2\)

Đặt \(\sqrt{x+3}=a,\sqrt{x}+1=b\left(a\ge0,b\ge1\right)\)

=> \(a^2+b^2=2x+2\sqrt{x}+4\)

Khi đó PT

<=> \(ab=\frac{a^2+b^2}{2}\)=> \(a=b\)

= >\(\sqrt{x+3}=\sqrt{x}+1\)

<=> \(2\sqrt{x}=2\)=>\(x=1\)(tm ĐKXĐ)

Vậy x=1

13 tháng 10 2016

\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)

Mà ta có điều kiện là \(0\le x\le1\)

=> E \(\ge1\)

Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)

Đạt GTNN là 1 khi x = 1

14 tháng 6 2017

a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)

\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)

\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)

Nên x-1=0 suy ra x=1

b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)

Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)

Nên x+1=0 suy ra x=-1

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

29 tháng 1 2016

lop 9 kia a moi hoc lop mau giao

29 tháng 1 2016

binh phuong 2 ve tu giai

8 tháng 9 2018

\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)

\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)

\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)

\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)          Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\)    điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)

12 tháng 3 2019

ai giúp vớ cần gấp

12 tháng 3 2019

ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)

(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)

pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)

<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)

<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)

<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)

<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)

<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)

<=> \(x^2\left(3-2x\right)=3x-2\)

<=> \(-2x^3+3x^2-3x+2=0\)

<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)

<=> x=1  (tm) 

12 tháng 3 2019

ĐKXĐ: \(\frac{2}{3}\le x\le\frac{3}{2};x\in R\)

Pt cho tương đương: \(x\sqrt{3x-2}+\sqrt{3-2x}=\sqrt{\left(x+1\right)\left(x^2+1\right)}\)

Đặt \(\sqrt{3x-2}=a;\sqrt{3-2x}=b\left(a,b\ge0\right)\). Khi đó, ta được phương trình:

\(ax+b=\sqrt{\left(a^2+b^2\right)\left(x^2+1\right)}\Leftrightarrow a^2x^2+2abx+b^2=a^2x^2+b^2x^2+a^2+b^2\)

\(\Leftrightarrow2abx-b^2x^2-a^2=0\Leftrightarrow a^2-2abx+b^2x^2=0\)

\(\Leftrightarrow\left(a-bx\right)^2=0\Leftrightarrow a=bx\) hay \(\sqrt{3x-2}=x\sqrt{3-2x}\Leftrightarrow3x-2=3x^2-2x^3\)

\(\Leftrightarrow2x^3-3x^2+3x-2=0\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)=9\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-x+2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\2x^2-x+2=0\left(vn\right)\end{cases}}\)

Vậy PT cho có nghiệm duy nhất x=1.

12 tháng 3 2019

Cái chỗ " 2(x-1)(x2+x+1) - 3x(x-1) = 9" bn sửa 9 thành 0 nhé, tại mik gõ vội :(