K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

#)Giải :

Áp dụng :

Số chính phương chia 3 dư 0 hoặc 1

Số chính phương chia 4 dư 0 hoặc 1 

Đặt A = ( x - y )( x - z )( y - z)

Vì một số chính phương chia 3, 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3 

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 ( 1 )

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất hai số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 ( 2 ) 

Từ ( 1 ) và ( 2 ) kết hợp với ƯCLN ( 3, 4 ) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12 

                #~Will~be~Pens~#

14 tháng 8 2016

2.(x-5)-3.(x-4)=-6+15.-3

\(2\left(x-5\right)-3\left(x-4\right)=-51\)

\(\left(2x-10\right)-\left(3x-12\right)=-51\)

\(2x-10-3x+12=-51\)

\(\left(2x-3x\right)+\left(-10+12\right)=-51\)

\(-x+2=-51\)

\(-x=-53\)

\(x=53\)

vậy x=53

chúc bạn học tốt like mình nha

14 tháng 8 2016
x+7y316(x+7y)31x+7y⋮31⇒6(x+7y)⋮31
=>6x+42y316x+42y⋮31
=> 6x+11y+31y316x+11y+31y⋮31
Vì 31y316x+11y3131y⋮31⇒6x+11y⋮31;););)
 
 
27 tháng 5 2015

bài này bạn giải rồi mà

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

26 tháng 5 2015

Cậu lấy trong quyển Toán nâng cao nào vậy ?

27 tháng 5 2015

Ap dụng:

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

 

26 tháng 5 2015

BÀI NÀY TRONG CÂU HỎI HAY MÀ

3 tháng 2 2016

đề sai hay sao ý bn

9 tháng 1 2016

1 số bất kì chia cho 3 có số dư là 0;1;2
4 số nguyên bất kì chia cho 3 nhận được 1 trong 3 số dư 0;1;2=> có ít nhất 2 số có cùng số dư khi chia hết cho 3
=> (x-y)(x-z)(y-z)(x-t)(z-t) chia hết cho 3
Nếu 2 trong 4 số x;y;z;t có cùng số dư khi chia cho 4 => (x-y)(x-z)...(z-t) chia hết cho 4
Nếu không có cặp số nào có cùng số dư khi chia cho 4 => có 2 số lẻ, 2 số chẵn
hiệu 2 số lẻ chia hết cho 2; hiệu 2 số chẵn chia hết cho 2 => (x-y)(x-z)...(z-t) chia hết cho 4
 

9 tháng 1 2016

đơn giản... đợi mình 5p viết lời giải