K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2015

\(\left(a\right)5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}\left(25+5+1\right)=5^{2001}.31\)

Luôn luôn chia hết cho 31 

 

14 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

cái này mới đúng

16 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

16 tháng 8 2015

a)52003+52002+52001=52001(52+5+1)=52001(25+5+1)=52001.31=>chia hết cho 31 

b)1+7+72+73+...+7101= (1+7)+(72+73)+...+(7100+7101)= 1(1+7) + 72.(1+7) +......+ 7100.(1+7)= 1.8 + 72.8 +........+ 7100.8= 8.(1+72+...+7100) =>chia hết cho 8

c)439+440+441=438.4+438.42+438.43=438.(4+16+64)=438.84=> chia hết cho 28

13 tháng 10 2018

a) \(1+2+...+2^{2011}\)

\(=2^0+2+...+2^{2010}+2^{2011}\)

\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)

\(=2^0\cdot3+...+2^{2010}\cdot3\)

\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)

Các câu còn lại tương tự, dài quá

13 tháng 10 2018

a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.

 Ta có : 

  A  = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 +  22011 )

=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )

=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3

-  Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )

b, 

Ta có : 

 B = 1 + 7 +...+ 7101

=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )

=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )

=> B = 50 + 72.50 +...+799.50

=> B = 50.( 1 + 7+...+ 799 ) => B chia hết cho 50

Dưới tương tự...

14 tháng 8 2017

a, 5^2016+5^2015+5^2014=5^2014x(5^2+5+1)=5^2014x 31=> chia hết cho 31

b, 1+7+7^2+7^3+...7^101= (1+7)+(7^2+7^3)+...+(7^100+7^101)=1x(1+7)+7^2x(1+7)+...+7^100x(1+7)=1x8+7^2x8+...+7^100x8

                                        =8x(1+7^2+...7^100)=>chia hết cho 8

c,4^39+4^40+4^41=4^38x4+4^38x4^2+4^38x4^3=4^38x(4+16+64)=4^38x84=> chia hết cho 28

14 tháng 8 2017

a/ 52016+52015+52014=52014(52+5+1)=31.52014  => Chia hết cho 31

b/ 1+7+72+73+...+7101  Có tổng 101+1=102 số hạng. Nhóm 2 số hạng liên tiếp với nhau ta được 51 nhóm như sau:

(1+7)+(72+73)+...+(7100+7101)=(1+7)+72(1+7)+...+7100(1+7)

= (1+7)(1+72+...+7100)=8.(1+72+...+7100)  => Chia hết cho 8

c/ 439+440+441=439(1+4+42)=439.21=438.4.7.3=3.438.28

=> Chia hết cho  28

4 tháng 10 2016

a)\(5^{2003}+5^{2002}+5^{2001}=5^{2001}\left(5^2+5+1\right)=5^{2001}.31\) chia hết cho 31 (đpcm)

b)\(4^{39}+4^{40}+4^{41}=4^{38}\left(4+4^2+4^3\right)=4^{38}.84=4^{28}.3.28\) chia hết cho 28 (đpcm)

22 tháng 8 2018

\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)

\(=5^{2001}.\left(1+5+5^2\right)\)

\(=5^{2001}.31\)

\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)

\(b.\)

\(1+7+7^2+7^3+......+7^{101}\)

\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)

\(=8+7^2.8+7^4.8+.....+7^{100}.8\)

\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)

Ta thấy cả hai số hạng đều chia hết cho 8

\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)

22 tháng 8 2018

Mình cảm ơn :)

5 tháng 8 2016

A) 52018 + 52017 + 52016 = 52016 . (52 + 5 + 1) = 52016 . (25 + 5 + 1) = 52016 . 31

Vì 31 chia hết cho 31 => 52016 . 31 chia hết cho 31

hay 52018 + 52017 + 52016 chia hết cho 31

5 tháng 8 2016

a,52018+52017+52016=52016(1+5+52)=52016.31

=>52018+52017+52016 chia hết cho 31.

b,1+7+72+73+ ....+7101

=(1+7)+(72+73)+...+(7100+7101)

=1.(1+7)+72.(1+7)+...+7100.(1+7)

=8.(1+72+...+7100)

=>1+7+72+...+7101 chia hết cho 8.

29 tháng 9 2017

Gọi phần a, là A,ta có:

A=1+4+42+43+...+42000

4.A=4.(1+4+42+...+42000)

4.A=4+42+43+44+...+42001

4.A-A=(4+42+43+...+42001)-(1+4+42+...+42000)

3.A=4+42+43+...+42001 -1-4-42-...-42000

3.A=42001-1

A=(42001-1):3

K CHO MIK NHÉ !