K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

\(x^2+2x+y^2-6y-10=0\)

\(x^2+2x+1+y^2-6x+9=10\)

\(\left(x+1\right)^2+\left(y-3\right)^2=0\)

\(\left(x+1\right)^2=\left(y-3\right)^2=0\)

\(x+1=y-3=0\)

Vậy \(x=-1;y=3\)

\(x^2\)\(+2x+y^2\)\(-6y-10=0\)

\(x^2\)\(+2x+1+y^2\)\(-6x+9=10\)

\(\left(x+1\right)^2\)+\(\left(y-3\right)^2\)\(=0\)

\(\left(x+1\right)^2\)\(=\left(y-3\right)^2\)\(=0\)

\(x+1=y-3=0\)

Vậy: \(x=-1;y=3\)

14 tháng 9 2016

cái này là hằng đẳng thức đấy bn ạ

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

14 tháng 6 2018

1,2x2+2y2+z2+2xy+2xz+2yz+10x+6y+34=0

<=>(x2+y2+z2+2xy+2xz+2yz)+(x2+10x+25)+(y2+6y+9)=0

<=>(x+y+z)2+(x+5)2+(y+3)2=0

Mà \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+5\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}\Rightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2\ge0}\)

\(\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y+z=0\\x=-5\\y=-3\end{cases}\Rightarrow}\hept{\begin{cases}z=8\\x=-5\\y=-3\end{cases}}}\)

2, A=2x2+4y2+4xy+2x+4y+9

=(x2+4xy+4y2)+(2x+4y)+x2+9

=[(x+2y)2+2(x+2y)+1]+x2+8

=(x+2y+1)2+x2+8

Vì \(\hept{\begin{cases}\left(x+2y+1\right)^2\ge0\\x^2\ge0\end{cases}}\Rightarrow\left(x+2y+1\right)^2+x^2\ge0\)

\(\Rightarrow\left(x+2y+1\right)^2+x^2+8\ge8\)

Dấu "=" xảy ra khi x=0,y=-1/2

Vậy Amin = 8 khi x=0,y=-1/2

14 tháng 6 2018

Bài 1:

Ta có:\(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2xz+2yz\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)

Vì 3 vế trên đều dương ,nên ta có

\(\hept{\begin{cases}x+y+z=0\\x+5=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}z=0-y-x\\x=-5\\y=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}z=0+3+5=8\\x=-5\\y-3\end{cases}}}\)

Vậy ...........................................................................................................................

6 tháng 8 2015

x^2+2x+y^2-6y+10=0

(x^2+2x+1)+(y^2-6y+9)=0

(x+1)^2+(y-3)^2=0

=>x+1=0; y-3=0

x=-1, y=3

16 tháng 10 2017

x=-1:y=3

-1 là âm 1 nha!^-^

19 tháng 7 2018

(2x-3)^2-4x(x-3)= 0

=> 4x^2-12x+9 - 4x^2 + 12x=0

=> 9=0 ( vô cmn lí )

=> vô nghiệm

Sai or đúng chưa rõ tự kiểm tra oke

7 tháng 6 2016

\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)

\(b,8x^3+y^3-8x^3+y^3=2y^3\)

6 tháng 6 2016

bấm hích nhé,mình sẽ àm cho bạn^^