Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=1+3+3^2+...........+3^{118}+3^{119}\)
\(\Leftrightarrow M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+..........+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(\Leftrightarrow M=40+3^4\left(1+3+3^2+3^3\right)+..........+3^{116}\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow M=40+3^4.40+...........+3^{116}.40\)
\(\Leftrightarrow M=40\left(1+3^4+.........+3^{116}\right)⋮5\)
\(\Leftrightarrow M⋮5\)
Xem bài của a Tuấn :
Câu hỏi của Phạm Gia Linh - Toán lớp 6 | Học trực tuyến
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
Bài giải:
Câu |
Đúng |
Sai |
a) 134 . 4 + 16 chia hết cho 4.
|
x |
|
b) 21 . 8 + 17 chia hết cho 8.
|
|
x |
c) 3 .100 + 34 chia hết cho 6.
|
|
x |
Gọi thứ tự các ô trong dãy lần lượt là :
01;02;03;04;05;06;07 thì ta có:
01=04=07; 02=05 =176 ; 03=06=324;
Mà 01+02+03=1000 hay 01+176+324=1000
=>01+500=1000 => 01 = 500;
Số thích hợp để điền vào ô thứ nhất là 500...
1: \(A=2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+2^{100}\)
\(=7\left(2+...+2^{97}\right)+2^{100}\) chia 7 dư 2