K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

cái pt thứ 2 bạn nhân 2 vế vs x

Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm

12 tháng 5 2016

x4+x3-6x3-6x2+6x2+6x+4x+4=0

15 tháng 12 2019

\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)+8}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)}{2\sqrt{x}-1}+\frac{8}{2\sqrt{x}-1}=\sqrt{x}+\frac{8}{2\sqrt{x}-1}\)

Áp dụng BĐT Cô Si cho 2 số dương \(\sqrt{x}\)và \(\frac{8}{2\sqrt{x}-1}\)ta có :

\(\sqrt{x}+\frac{8}{2\sqrt{x}-1}\ge2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)

\(\Rightarrow A_{min}\)\(\Leftrightarrow2\sqrt{\sqrt{x}.\frac{8}{2\sqrt{x}-1}}\)nhỏ nhất \(\Rightarrow x=0\)

Vậy \(A=0\)\(\Leftrightarrow\sqrt{x}=\frac{8}{2\sqrt{x}-1}\)( tự tính nha ) 

15 tháng 12 2019

Phạm Thị Thùy Linh đây nhé 

\(A=\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}=\frac{1}{2}\left(2\sqrt{x}-1+\frac{16}{2\sqrt{x}-1}\right)+\frac{1}{2}\ge\frac{9}{2}\)

Dấu "=" xảy ra khi \(x=\frac{25}{4}\)

19 tháng 9 2016

\(3x^4+4x^3-3x^2-2x+1=0\)

\(\Leftrightarrow3x^4+x^3-x^2+3x^3+x^2-x-3x^2-x+1=0\)

\(\Leftrightarrow x^2\left(3x^2+x-1\right)+x\left(3x^2+x-1\right)-\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x-1\right)\left(3x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x-1=0\left(1\right)\\3x^2+x-1=0\left(2\right)\end{cases}}\)

  • \(\Delta_{\left(1\right)}=1^2-\left(-4\left(1.1\right)\right)=5\)

\(\Leftrightarrow x_{1,2}=\frac{-1\pm\sqrt{5}}{2}\left(tm\right)\)

  • \(\Delta_{\left(2\right)}=1^2-\left(-4\left(3.1\right)\right)=13\)

\(x_{1,2}=\frac{-1\pm\sqrt{13}}{6}\left(tm\right)\)

13 tháng 8 2016
Bạn có thể ghi đề rõ hơn được không nhìn cái đề mình đọc không hiểu
2 tháng 7 2017

Đề như thế này ak???

\(2\left(3x+5\right)\times\sqrt{x^2}+9=3x+2x+30\)

2 tháng 7 2017

Bỏ số 9 vào căn luôn bạn ạ

13 tháng 5 2016

mk bấm máy ra

x\(\approx\)0,146

13 tháng 5 2016

"Hình như" ở 2 mẫu phải cùng là số 2 hoặc -2 vì theo đó, phương trình sẽ có dạng giải được. Mình sửa lại đề theo hướng đó!

\(x=0\) không phải là nghiệm của pt

Xét \(x\ne0\), chia cả tử và mẫu 2 phân số đầu cho x, ta được:

\(pt\Leftrightarrow\frac{2}{3x+\frac{2}{x}-1}-\frac{7}{3x+\frac{2}{x}+5}=1\)

Đặt \(t=3x+\frac{2}{x}\)

\(pt\rightarrow\frac{2}{t-1}-\frac{7}{t+5}=1\Leftrightarrow t\in\left\{-11;2\right\}\)

Thay lại giải ra x.

30 tháng 8 2017

C1 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)

C2 : \(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{2\sqrt{x}+4-\sqrt{x}}{\sqrt{x}+2}=\frac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\frac{\sqrt{x}}{\sqrt{x}+2}\le2\)

30 tháng 8 2017

ĐKXĐ: \(x\ge0\)

\(\frac{\sqrt{x}+4}{\sqrt{x}+2}=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\le2\)

Vậy GTLN là 2 khi x = 0.

28 tháng 6 2017

a.ĐKXĐ;\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

b.P=\(\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)=\(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)

=\(\frac{3x-6\sqrt{x}}{x-4}=\frac{3\sqrt{x}.\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)=\(\frac{3\sqrt{x}}{\sqrt{x}+2}\)

c.P=2\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}=2\Leftrightarrow3\sqrt{x}=2\sqrt{x}+\text{4}\)\(\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Vậy x=16

17 tháng 10 2018

thần đồng