K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Vì c là chữ số tận cùng của m

=>c có chữ số tận cùng là 0 hoặc 5

Mà m có 101 số hạng

=>c có chữ số tận cùng là 5

Ta có:

abcd=1000.a+100.b+10c+d

Mà 1000.a và 100.b đều chia hết cho 25

=>10.c+d phải chia hết cho 25

=>50+d phải chia hết cho 5

Mà d là số có một chữ số =>d=0

Ta có:

ab=a+b2

10a+b=a=b2

9a=b2-b

9a=b.(b-1)

Vì 9a chia hết cho 9

=>b.(b-1) phải chia hết cho 9

=>b=9 (Vì b là số có một chữ số)

=>a=8

Vậy số tự nhiên có 4 chữ số abcd thỏa mãn các điều kiện trên là: 8950.

Chúc bạn làm bài kiểm tra tốt. Mình cũng không chắc cho lắm nhưng mình thấy cũng tạm được, chỉ mỗi tội hơi dài. Chữ "chia hết" bạn nên dùng kí hiệu.

k cho mình với nha!

OK!

22 tháng 4 2016

giải giúp mình đi bài kiểm tra ngày mai của mik ó

28 tháng 11 2016

M=tan cung 5=> C=5

2)=> d=0

3)ab=10a+b=a+b^2

9a=b(b-1)=>b=9; a=8

ds:8950

12 tháng 3 2016

bài này trong sách tuyển chọn đề thi học sinh giỏi lớp 6; 7; 8 môn toán; đề 6; bài 4; trang 78.

21 tháng 7 2016

Ta có

\(M=\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)+5^{101}\)

Dễ thấy \(\left(5+5^2\right)+5^2\left(5+5^2\right)+......+5^{98}\left(5+5^2\right)\) chia hết cho 10 và có chứ số tận cùng là 0

              5101 có chữ số tận cùng là 5

=> M có tân cùng là 5

=>c=5 (1)

Mặt khác

\(\overline{abcd}⋮26\Rightarrow\overline{ab0d}⋮25\)

=> d =0 để thỏa mãn diều kiện  (2)

Ta có

\(\overline{ab}=a+b^2\)

\(\Rightarrow10a+b=a+b^2\)

\(\Rightarrow9a=b\left(b-1\right)\)

Mà \(\left(b;b-1\right)=1\)

=>\(\Rightarrow\left[\begin{array}{nghiempt}b⋮9\\b-1⋮9\end{array}\right.\)

Xét điều kiện của b

\(0\le b\le9\)

Ta thấy từ 1 đến 9 chỉ có 9 chia hết cho 9

\(\Rightarrow\left[\begin{array}{nghiempt}b=9\\b-1=9\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}b=9\left(TM\right)\\b=10\left(KTM\right)\end{array}\right.\)

=> b=9 (3)

=>9a=9

=>a=1 (4)

Từ (1);(2);(3) và (4)

=>\(\overline{abcd}=1950\)

21 tháng 7 2016

abcd = 1950 nha