Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg vuông ABE và tg vuông PBE có
BE chung
\(\widehat{ABE}=\widehat{PBE}\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta PBE\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
b/ Xét tg ABI và tg PBI có
\(\Delta ABE=\Delta PBE\Rightarrow BA=BP\)
BI chung
\(\widehat{ABI}=\widehat{PBI}\left(gt\right)\)
\(\Rightarrow\Delta ABI=\Delta PBI\left(c.g.c\right)\Rightarrow AI=IP\) (1)
Xét tg vuông ACF và tg vuông QCF có
CF chung
\(\widehat{ACF}=\widehat{QCF}\left(gt\right)\)
\(\Rightarrow\Delta ACF=\Delta QCF\) (cạnh huyền và góc nhọn tương ứng bằng nhau)
Xét tg ACI và tg QCI có
\(\Delta ACF=\Delta QCF\Rightarrow AC=QC\)
CI chung
\(\widehat{ACI}=\widehat{QCI}\left(gt\right)\)
\(\Rightarrow\Delta ACI=\Delta QCI\left(c.g.c\right)\Rightarrow AI=IQ\) (2)
Từ (1) và (2) \(\Rightarrow AI=IP=IQ\)
c/
Xét tg QIP có
IQ=IP => tg QIP cân ở I
Mà \(ID\perp BC\)
\(\Rightarrow DQ=DP\) (Trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường trung tuyến)
=> D là trung điểm của PQ
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
Cho mình làm lại
TL:
Có 2 số nguyên thoả mãn là :
X + Y = 7
HT
1.Điều kiện : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x+3,4>0\\x+2,4>0\\x+7,2>0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(\Rightarrow\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=x+3,4+x+2,4+x+7,2\)
\(=3x+13=4x\)
\(\Rightarrow4x-3x=13\)
\(\Rightarrow x=13\)
Vậy \(x=13\)
2.\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)
\(=3^n.30+2^n.12\)
\(=6\left(3^n.5+2^n.2\right)⋮6\)
4.a)
- \(3^{34}=3^{30+4}=3^{30}.3^4=3^{3.10}.3^4=\left(3^3\right)^{10}.3^4=27^{10}.3^4\)
\(5^{20}=5^{2.10}=\left(5^2\right)^{10}=25^{10}\)
Vì \(27^{10}>25^{10}\Rightarrow27^{10}.3^4>25^{10}\)
hay \(3^{34}>5^{20}\)
- \(17^{20}=17^{4.5}=\left(17^4\right)^5=83521^5>71^5\)
b)\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
) 120 độ z' x' O z y x
thực ra bữa h off bây h rảnh nên vào lướt hoidap -.- thấy bài bạn nên làm vậy
a) Vì Oz là tia phân giác của xOy
=> xOz = zOy =\(\frac{xOy}{2}=\frac{120^0}{2}=60^0\)
Vì x'Oz' đối đính xOz
=> x'Oz' = xOz= 60 độ
làm tới đây thôi nhé mình phải đi ngủ rồi , còn mỗi câu b mấy bạn khác làm luôn đi.