Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \(A=(a+1)(b+1)(c+1)\)
\(6A=(a+1)(b+b+2)(c+c+c+3)\)
Áp dụng BĐT AM-GM ta có:
\(6A\geq 2\sqrt{ab}.3\sqrt[3]{2b^2}.4\sqrt[4]{3c^3}\)
\(\Leftrightarrow 6A\geq 24\sqrt{a}.\sqrt[3]{2b^2}.\sqrt[4]{3c^3}=24\sqrt[12]{a^6.16b^8.27c^9}\)
\(\Leftrightarrow A\geq 4\sqrt[12]{432a^6b^8c^9}\) (1)
Lại có:
\(abc=ab(6-a-b)=\frac{2}{9}.3a.\frac{3}{2}b(6-a-b)\)
\(\leq \frac{2}{9}.\left(\frac{3a+\frac{3}{2}b+6-a-b}{3}\right)^3\) (BĐT AM-GM ngược dấu)
\(\Leftrightarrow abc\leq \frac{2}{9}\left(\frac{6+2a+\frac{b}{2}}{3}\right)^3\leq \frac{2}{9}\left(\frac{6+2+1}{3}\right)^3\)
\(\Leftrightarrow abc\leq 6\) (2)
Từ (1); (2) suy ra \(A\geq 4\sqrt[12]{2.(abc)^3.a^6b^8c^9}\geq 4\sqrt[12]{a^3b.a^3b^3c^3.a^6b^8c^9}\)
(do \(a\leq 1, b\leq 2\))
hay \(A\geq 4\sqrt[12]{(abc)^{12}}=4abc\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \((a,b,c)=(1,2,3)\)
Ta có: \(\left\{{}\begin{matrix}\sqrt{a}+\sqrt{b}+\sqrt{c}=2\\\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}=\dfrac{1}{\sqrt{abc}}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\\\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\end{matrix}\right.\)
\(\Rightarrow a+b+c=2\)
Ta cần chứng minh:
\(b+c>4abc\)
\(\Leftrightarrow b+c-4\left(2-b-c\right)bc>0\)
\(\Leftrightarrow\left(b-4bc+4bc^2\right)+\left(c-4bc+4cb^2\right)>0\)
\(\Leftrightarrow\left(\sqrt{b}-2c\sqrt{b}\right)^2+\left(\sqrt{c}-2b\sqrt{c}\right)^2>0\) (đúng vì dấu = không xảy ra).
trả lời
bn ơi có thiếu đề ko vậy bn
mik làm thấy.. ib riêng nhaa
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.