K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(a+b+c=\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)

\(=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{ac}{b+c}+\frac{bc}{a+c}\)

\(=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

2 tháng 1 2018

post ít một thôi

17 tháng 4 2019

trả lời

bn ơi có thiếu đề ko vậy bn

mik làm thấy.. ib riêng nhaa

17 tháng 4 2019

sorry!! Thêm đk abc=1 nk nhá

31 tháng 3 2017

Bài 2:

\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)

Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)

\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:

\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)

Thiết lập các BĐT tương tự:

\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)

Dấu "=" không xảy ra nên ta có ĐPCM

Lưu ý: lần sau đăng từng bài 1 thôi nhé !

31 tháng 3 2017

1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:

\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)

TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)

\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)

Cộng vế với vế ta được:

\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)

6 tháng 8 2016

\(a^2+b^2-c^2=a^2+b^2-\left(-a-b\right)^2=-2ab\)

\(VT=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}.\frac{a+b+c}{abc}=0\)

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

21 tháng 8 2019

\(\frac{2}{a}=\frac{1}{b}+\frac{1}{c}\)

<=> \(\frac{2}{a}=\frac{b+c}{bc}\) <=> \(2bc=a\left(b+c\right)=ab+ac\)

\(\frac{a+b}{a-b}+\frac{a+c}{a-c}=\frac{\left(a+b\right)\left(a-c\right)+\left(a+c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)}=\frac{a^2-ac+ab-bc+a^2-ab+ac-bc}{a^2-ac-ab+bc}=\frac{2a^2-2bc}{a^2-\left(ac+ab\right)+bc}=\frac{2\left(a^2-bc\right)}{a^2-2bc+bc}\)(vì ac+ab=2bc)

=\(\frac{2\left(a^2-bc\right)}{a^2-bc}=2\)

Vậy \(\frac{a+b}{a-b}+\frac{a+c}{a-c}=2\)

21 tháng 8 2019

Hình như cái phần (a+b)(a+b) bạn đánh sai đề phải không?