K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618

26 tháng 8 2020

lớn hơn hay = thế ạ

26 tháng 8 2020

Ta có :

\(a^2b+b^2c+c^2a\ge\frac{9a^2b^2c^2}{1+2a^2b^2c^2}\)

\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)\left(1+2a^2b^2c^2\right)\ge9a^2b^2c^2\)

\(\Leftrightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^{3v}+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)(*)

Áp dụng BĐT AM-GM ta có:

\(a^2b+a^4b^3c^2+a^3b^2c^4\ge3\sqrt[3]{a^9b^6c^6}=3a^3b^2c^2\)

\(b^2c+a^2b^4c^3+a^4b^3c^2\ge3a^2b^3c^2\)

\(c^2a+a^3b^2c^4+a^2b^4c^4\ge3a^2b^2c^3\)

Cộng theo vế

\(\Rightarrow a^2b+b^2c+c^2a+2a^4b^3c^2+2a^2b^4c^3+2a^3b^2c^4\ge3a^2b^2c^2\left(a+b+c\right)\)

Vậy $(*)$ đúng

Do đó ta có đpcm

#Cừu

21 tháng 6 2017

\(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\)

\(=\frac{a^4}{ab+2ca}+\frac{b^4}{bc+2ab}+\frac{c^4}{ca+2bc}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=\frac{1}{3}\)

17 tháng 1 2018

undefined

Tham khảo nhá

7 tháng 4 2020

cho a b c 0 và a+b+c=3 CMR a/1+b^2 +b/1+c^2 +c/1+a^2 >=3/2

giúp minh với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!