Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{1-ab}=1+\dfrac{ab}{1-ab}\le1+\dfrac{ab}{1-\dfrac{a^2+b^2}{2}}=1+\dfrac{2ab}{a^2+b^2+2c^2}\)
\(=1+\dfrac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le1+\dfrac{ab}{\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)
\(\le1+\dfrac{1}{2}\left(\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)\). Tương tự ta cũng có:
\(\dfrac{1}{1-bc}\le1+\dfrac{1}{2}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}\right);\dfrac{1}{1-ca}\le1+\dfrac{1}{2}\left(\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+b^2}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le3+\dfrac{1}{2}\left(\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{b^2+c^2}{b^2+c^2}+\dfrac{c^2+a^2}{c^2+a^2}\right)=\dfrac{9}{2}\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Bai 1: Cho abc=1
Tính A-B, biết:
A=(a+(1/a)2+(b+(1/b)2+(c+(1/c)2
B=(a+(1/a)(b+(1/b)(c+(1/c)
2)
Xét hiệu:
\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)
\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)
\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)
=> BĐT luôn đúng
Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)
1)
Áp dụng BĐT Cauchy cho 2 số không âm, ta có:
\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)
\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)
\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)
Từ (1)(2)(3) cộng vế theo vế:
\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)
\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)
a ) \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Do \(a^2\ge0;b^2\ge0;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=0\) ( * )
Thay * vào biểu thức M , ta được :
\(M=\left(0-1\right)^{1999}+0^{2000}+\left(0+1\right)^{2001}\)
\(=-1^{1999}+0+1^{2001}\)
\(=-1+0+1\)
\(=0\)
Vậy \(M=0\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=\dfrac{1}{abc}\)
\(\Leftrightarrow\dfrac{bc+ac+ab-1}{abc}=0\)
\(\Leftrightarrow bc+ac+ab-1=0\)
\(\Leftrightarrow bc+ac+ab=1\)
Mà \(a^2+b^2+c^2=1\)
\(\Rightarrow bc+ac+ab=a^2+b^2+c^2\)
\(\Rightarrow2bc+2ac+2ab=2a^2+2b^2+2c^2\)
\(\Rightarrow2a^2+2b^2+2c^2-2bc-2ac-2ab=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
Mà \(P=\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}\)
\(\Rightarrow P=\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\)
\(\Rightarrow P=1+1+1=3\)
Vậy \(P=3\)
a) Áp dụng bất đẳng thức Schur với \(r=1\)
\(\Rightarrow a^3+b^3+c^3+3abc\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
\(\Rightarrow3abc\ge a^2b+ca^2-a^3+ab^2+b^2c-b^3+c^2a+bc^2-c^3\)
\(\Rightarrow3abc\ge a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
b) Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\dfrac{a^3}{b^2}+b+b\ge3\sqrt[3]{\dfrac{a^3}{b^2}.b^2}=3a\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{c^2}+c+c\ge3b\\\dfrac{c^3}{a^2}+a+a\ge3c\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}+2\left(a+b+c\right)\ge3\left(a+b+c\right)\)
\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c\)
c) Ta có \(abc=ab+bc+ca\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\dfrac{1}{a+2b+3c}=\dfrac{1}{a+c+2\left(b+c\right)}\le\dfrac{1}{4}\left[\dfrac{1}{a+c}+\dfrac{1}{2\left(b+c\right)}\right]\)
Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+3a}\le\dfrac{1}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{2\left(a+c\right)}\right]\\\dfrac{1}{c+2a+3b}\le\dfrac{1}{4}\left[\dfrac{1}{b+c}+\dfrac{1}{2\left(a+b\right)}\right]\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{1}{4}\left[\dfrac{3}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\right]\)
\(\Rightarrow VT\le\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\) ( 1 )
Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0
\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\right]\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)
\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{16}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow VT\le\dfrac{3}{16}\)
\(\Rightarrow\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{3}{16}\) ( đpcm )
a) Ta có: \(\frac{a^2}{a+b}-\frac{b^2}{a+b}+\frac{b^2}{b+c}-\frac{c^2}{b+c}+\frac{c^2}{c+a}-\frac{a^2}{c+a}\) \(=a-b+b-c+c-a=0\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}=\frac{b^2}{a+b}+\frac{c^2}{b+c}+\frac{a^2}{c+a}\)
\(\Rightarrow2\left(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\right)=\frac{a^2}{a+b}+\frac{b^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{b+c}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\)\(\ge\frac{2ab}{a+b}+\frac{2bc}{b+c}+\frac{2ca}{c+a}\)
\(\Rightarrowđpcm\)
Dấu "=" \(\Leftrightarrow a=b=c\)
b) \(a^2b^2\left(a^2+b^2\right)=\frac{1}{2}\cdot ab\cdot2ab\cdot\left(a^2+b^2\right)\le\frac{1}{2}\cdot\frac{\left(a+b\right)^2}{4}\cdot\frac{\left(2ab+a^2+b^2\right)^2}{4}=2\)
Dấu "=" \(\Leftrightarrow a=b=1\)
\(\frac{bc}{a^2+1}=\frac{bc}{a^2+b^2+a^2+c^2}\le\frac{1}{2}\sqrt{\frac{b^2c^2}{\left(a^2+b^2\right)\left(a^2+c^2\right)}}\le\frac{1}{4}\left(\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\right)\)
Tương tự:
\(\frac{ac}{b^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{b^2+c^2}\right)\) ; \(\frac{ab}{c^2+1}\le\frac{1}{4}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)
Cộng vế với vế:
\(VT\le\frac{1}{4}\left(\frac{a^2}{a^2+b^2}+\frac{b^2}{a^2+b^2}+\frac{b^2}{b^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{a^2+c^2}+\frac{c^2}{a^2+c^2}\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)