Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\left[\left(x+2\right)-\left(x-3\right)\right]^2=\left(x+2-x+3\right)^2=5^2=25\)
\(b=x^2-5\)
\(c=\left(x+y-x+y\right)\left(x+y+x-y\right)=2y.2x=4xy\)
a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)
\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)
\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)
\(=4x^2+6x+7\)
b) Thay vào ta được
\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)
a/ đkxđ: x ≠ \(\pm3\)
b/ \(\dfrac{x^2+6x+9}{x^2-9}=\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
c/ Để phân thức = 0 thì:
\(\dfrac{x+3}{x-3}=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(ktmđkxđ\right)\)
Vậy k có x nào tm đề
Bài làm.
Đặt A = \(\dfrac{x^2+6x+9}{x^2-9}\)
a) Để giá trị phân thức xác định
thì x2 - 9 ≠ 0
⇔ x2 - 32 ≠ 0
⇔ (x - 3).(x + 3) ≠ 0
⇔ x ≠ 3 hoặc x ≠ -3
Vậy x ≠ \(\pm\) 3 thì giá trị của phân thức được xác định
b) A = \(\dfrac{x^2+6x+9}{x^2-9}\)
A = \(\dfrac{x^2+2x.3+3^2}{x^2-3^2}\)
A = \(\dfrac{\left(x+3\right)^2}{\left(x-3\right).\left(x+3\right)}\)
A = \(\dfrac{x+3}{x-3}\)
c) Để phân thưc có giá trị bằng 0
thì x2 - 9 = 0
⇔ x2 - 32 = 0
⇔ (x - 3).(x + 3) = 0
⇔ x - 3 = 0 hoặc x +3 = 0
⇔ x = 3 hoặc x = -3
Chúc bạn học tốt !!!
a) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x\left(x^2-5x+1\right)-2\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-5x^2+x-2x^2+10x-2-x^3-11x\)
\(=-7x^2-2\)
b) \(\left(x-1\right)\left(x^2+x+1\right)+x^3-2\)
\(=x\left(x^2+x+1\right)-1\left(x^2+x+1\right)+x^3-2\)
\(=x^3+x^2+x-x^2-x-1+x^3-2\)
\(=2x^3-3\)
c) \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x\left(x+y\right)-y\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2+xy-yx-y^2-2x^2+2xy\)
\(=-x^2-y^2+2xy\)
a, \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)
\(=x^3-7x^2+11x-2-x^3-11x=-7x^2-2\)
b, \(\left(x-1\right)\left(x^2+x+1\right)+\left(x^3-2\right)\)
\(=x^3-1+x^3-2=2x^3-3\)
c, \(\left(x-y\right)\left(x+y\right)-2x\left(x-y\right)\)
\(=x^2-y^2-2x^2+2xy=-x^2-y^2+2xy\)
\(A=100^2-99^2+98^2-97^2+....+2^2-1^2\)
\(=\left(100-99\right).\left(100+99\right)+\left(98-97\right).\left(98+97\right)+....+\left(2-1\right).\left(2+1\right)\)
\(=1+2+....+97+98+99+100=\frac{100.\left(100+1\right)}{2}=5050\)
\(B=3\left(2^2+1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)......\left(2^{64}+1\right)+1=\left(2^8-1\right).....\left(2^{64}+1\right)+1\)
Tiếp tục rút gọn như vậy,ta đc \(B=\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1+1=2^{128}\)
(a + b)3 + (b + c)3 + (c + a)3 - 3(a + b)(b + c)(c + a)
= a3 + 3a2b + 3ab2 + b3 + b3 + 3b2c + 3ab2 + c3 + c3 + 3c2a + 3ca2 + a3 - 3ab2 - 3a2b - 6abc - 3ac2 - 3b2c - 3bc2
= 2a3 + 3ac2 - 3ac2 - 6abc + b3 + b3 + c3 + c3 + 3bc2 - 3bc2 + 3b2c - 3b2c
= 2a3 - 6abc + b3 + b3 + c3 + c3 + 3bc2 - 3bc2 + 3b2c - 3b2c
= 2a3 - 6abc + b3 + b3 + c3 + c3
= 2a3 - 6abc + 2b3 + 2c3
(a+b)2-(a-b)2=[(a+b)+(a-b)][(a+b)-(a-b)]=(a+b+a-b)(a+b-a+b)=2a.2b=4ab
Cảm ơn bạn nhìu