Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1.2}{99.100}\)
\(=\frac{2}{9900}=\frac{1}{4950}\)
Câu A
Ta có (1/2)A = 1/22 + 1/23 + ... + 1/2100 + 1/2101
=> (1/2)A - A = - (1/2)A = (1/22 + 1/23 + ... + 1/2100 + 1/2101) - (1/2 + 1/22 + ... + 1/2100 )
= 1/2101 - 1/2
=> A = 1 - 1/2100
Câu B
Ta có 1/(1x2) = 1/1 - 1/2
1/(2.3) = 1/2 - 1/3
.................................
1/(99.100) = 1/99 - 1/100
=> B = 1/1 - 1/2 + 1/2 - 1/3 +.... +1/99 - 1/100
= 1 - 1/100
=99/100
có tử bằng 1+(1+2)+(1+2+3)+...+(1+2+3+...+98)
vậy sẽ có 98 lần số 1 97 lần số 2 96 lần số 3 ... và 1 lần số 98
=> Tử bằng 1x98 + 2x97 + ... + 98x1 = mẫu
=> B=1
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+..+\frac{1}{x\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1-1}{x+1}=\frac{x}{x+1}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}\)
\(=\frac{x+1}{x+1}-\frac{1}{x+1}\)
\(=\frac{x}{x+1}\)