Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Theo nguyên lí Dirichlet, chắc chắn phải có 2 số cùng dư khi chia cho 3
=> tích chia hết cho 3
Nếu có 2 số cùng số dư khi chia cho 4 thì tích chia hết cho 4
Nếu ko có 2 số nào cùng dư thì các số dư là 0,1,2,3 => có 2 số lẻ và 2 số chẵn
Hiệu của 2 số lẻ nhân với hiệu của 2 số chẵn chia hết cho 4 ( vì mỗi hiệu chia hết cho 2) => Tích chia hết cho 4 trong mọi a,b,c,d
Vì (3;4)=1 nên tích chia hết cho 3.4=12
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
Ta có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
> \(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\left(1\right)\)
Lại có \(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
< \(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\left(2\right)\)
Từ (1) và (2) => 1<M<2
=> M không là số tự nhiên
Ta có : \(\frac{2a+b+c}{a+b+c}=\frac{a+a+b+c}{a+b+c}=1+\frac{a}{a+b+c}\)
\(\frac{2b+c+d}{b+c+d}=\frac{b+b+c+d}{b+c+d}=1+\frac{b}{b+c+d}\)
\(\frac{2c+d+a}{d+a+c}=\frac{c+c+d+a}{d+a+c}=1+\frac{c}{d+a+c}\)
\(\frac{2d+a+b}{d+a+b}=\frac{d+d+a+b}{d+a+b}=1+\frac{d}{d+a+b}\)
Lại có:
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
=> M \(>\frac{a}{a+b+c+d}+\frac{b}{b+c+d+a}+\frac{c}{d+a+c+b}+\frac{d}{d+a+b+c}\)
\(=\frac{a+b+c+d}{a+b+c+d}=1\)
=> M > 1 (1)
Và :
M = \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{d+a+c}+\frac{d}{d+a+b}\)
Mà \(\frac{a}{a+b+c}< 1;\frac{b}{b+c+c}< 1;\frac{c}{d+a+c}< 1;\frac{d}{d+a+b}< 1\)
=> M \(< \frac{a+d}{a+b+c+d}+\frac{b+a}{b+c+d+a}+\frac{c+b}{d+a+c+b}+\frac{d+c}{a+b+c+d}\)
=> M \(< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}\)
=> M \(< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
=> M< 2 (2)
Từ (1) và (2) ta có 1 < M < 2. => M ko phải là số tự nhiên. Mà 1 là số tự nhiên => A ko phải là số tự nhiên
Vậy ..................(đpcm)
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
Ta có :
\(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)\(< \frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)\(\left(1\right)\)
Ta lại có :
\(\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)\(< \frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2a+2b+2c+2d}{a+b+c+d}=2\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)suy ra \(1< S< 2\)
Vậy \(S\)không là số tự nhiên
Câu hỏi của nguyễn hoàng mỹ dân - Toán lớp 6 - Học toán với OnlineMath
bạn tham khảo
** Bổ sung điều kiện $a,b,c,d>0$
Lời giải:
Đặt biểu thức đã cho là $A$.
Với $a,b,c,d>0$ thì:
$A>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1(*)$
Mặt khác:
Xét hiệu:
$\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{-(bd+dc)}{(a+b+c)(a+b+c+d)}<0$ với $a,b,c,d>0$
$\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}$
Hoàn toàn tương tự ta cũng có:
$\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d}$
$\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d}$
$\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}$
Cộng theo vế các BĐT trên thì:
$A< \frac{a+d+b+c+c+a+d+b}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2(**)$
Từ $(*); (**)\Rightarrow 1< A< 2$
$\Rightarrow A$ không là số tự nhiên.
Bạn lưu ý lần sau gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.