Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
a. ĐKXĐ: $x\geq 2$ hoặc $x=1$
PT $\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}$
$\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=3\end{matrix}\right.\) (đều thỏa mãn)
b.
PT $\Leftrightarrow \sqrt{(x-2)^2}=\sqrt{(2x-3)^2}$
$\Leftrightarrow |x-2|=|2x-3|$
\(\Leftrightarrow \left[\begin{matrix} x-2=2x-3\\ x-2=3-2x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\)
c. ĐKXĐ: $x=2$ hoặc $x\geq 3$
PT $\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x-3}-1)=0$
\(\Leftrightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x-3}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=4\end{matrix}\right.\) (đều tm)
d.
PT $\Leftrightarrow \sqrt{(2x-1)^2}=\sqrt{(x-3)^2}$
$\Leftrightarrow |2x-1|=|x-3|$
\(\Leftrightarrow \left[\begin{matrix} 2x-1=x-3\\ 2x-1=3-x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\)
a)...ghi lại đề...
\(\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}\cdot\sqrt{x-1}=\sqrt{x-1}\)
\(\Leftrightarrow\sqrt{x-2}=\frac{\sqrt{x-1}}{\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{x-2}^2=1^2\)
\(\Leftrightarrow x-2=1\)(Vì \(x-2\ge0\Leftrightarrow x\ge2\))
\(\Leftrightarrow x=3\)
\(\)
\(a,\sqrt{x^2-3x+2}=\sqrt{x-1}\)
\(\Rightarrow x^2-3x+2=x-1\)
\(\Rightarrow x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy..........
a
ĐK: \(x\ge1\left(\sqrt{x-1}\ge0\right)\)
\(PT\Leftrightarrow\sqrt{x^2-x-2x+2}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{x\left(x-1\right)-2\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}=\sqrt{x-1}\\ \Leftrightarrow\left(\sqrt{x-1}\right)\left(\sqrt{x-2}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)
b
ĐK: \(\left\{{}\begin{matrix}x^2-4x+4>0\\4x^2-4x+9>0\end{matrix}\right.\)
PT \(\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(2x-3\right)^2}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\\x-2=3-2x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)
a)
ĐK: $x\geq 2$
PT \(\Leftrightarrow \sqrt{(x-1)(x-2)}=\sqrt{x-1}\)
\(\Leftrightarrow \sqrt{x-1}(\sqrt{x-2}-1)=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-1}=0\\ \sqrt{x-2}-1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=1(\text{loại vì x}\geq 2)\\ \sqrt{x-2}=1\end{matrix}\right.\)
\(\Rightarrow x=1^2+2=3\) là nghiệm duy nhất thỏa mãn
b)
ĐK: $x\in\mathbb{R}$
Bình phương 2 vế:
\(\Rightarrow x^2-4x+4=4x^2-12x+9\)
\(\Leftrightarrow (x-2)^2=(2x-3)^2\)
\(\Leftrightarrow (x-2)^2-(2x-3)^2=0\Leftrightarrow (x-2-2x+3)(x-2+2x-3)=0\)
\(\Leftrightarrow (-x+1)(3x-5)=0\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{5}{3}\end{matrix}\right.\) (đều thỏa mãn)
Vậy..........
c)
ĐKXĐ: $x\geq 3$
PT \(\Leftrightarrow \sqrt{(x-2)(x-3)}=\sqrt{x-2}\)
\(\Leftrightarrow (x-2)(x-3)=x-2\) (bình phương 2 vế không âm)
\(\Leftrightarrow (x-2)(x-3-1)=0\)
\(\Rightarrow \left[\begin{matrix} x-2=0\\ x-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2(\text{loại vì x}\geq 3)\\ x=4\end{matrix}\right.\)
Vậy $x=4$
d)
ĐK: $x\in\mathbb{R}$
PT \(\Leftrightarrow 4x^2-4x+1=x^2-6x+9\) (bình phương 2 vế không âm)
\(\Leftrightarrow (2x-1)^2=(x-3)^2\Leftrightarrow (2x-1)^2-(x-3)^2=0\)
\(\Leftrightarrow (2x-1-x+3)(2x-1+x-3)=0\)
\(\Leftrightarrow (x+2)(3x-4)=0\Rightarrow \left[\begin{matrix} x+2=0\\ 3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\) (đều thỏa mãn)
Vậy.........
a/ (576x2 +528x -96)(0,25x2 + 11x/48 +1/6)
b/ (x+1)(x-5)(x2 -4x -52)=0