Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C =- (4x2+4x+1) - (9y2 -6y +1) +3 = - (2x+1)2 - ( 3y -1)2 + 3 </ 3
C max = 3 khi x =-1/2 và y =1/3
D - dể suy nghĩ đã nhé
a/ \(A=x^2+y^2-2x+6y+12\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
\(\Leftrightarrow A\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Vậy....
b/ \(B=-4x^2-9y^2-4x+6y+3\)
\(=-\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)+1\)
\(=-\left(2x+1\right)^2-\left(3y+1\right)^2+1\)
Với mọi x, y ta có :
\(\left\{{}\begin{matrix}\left(2x+1\right)^2\ge0\\\left(3y+1\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\left(2x+1\right)^2\le0\\-\left(3y+1\right)^2\le0\end{matrix}\right.\)
\(\Leftrightarrow-\left(2x+1\right)^2-\left(3y+1\right)^2\le0\)
\(\Leftrightarrow B\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{1}{3}\end{matrix}\right.\)
Lời giải:
\(A=1+4x+6y-x^2-y^2=1-(x^2-4x)-(y^2-6y)\)
\(=14-(x^2-4x+4)-(y^2-6y+9)=14-(x-2)^2-(y-3)^2\)
Ta thấy $(x-2)^2\geq 0; (y-3)^2\geq 0, \forall x,y\in\mathbb{R}$
Do đó:
\(A=14-(x-2)^2-(y-3)^2\leq 14\)
Vậy GTLN của $A$ là $14$. Dấu "=" xảy ra khi \((x-2)^2=(y-3)^2=0\Leftrightarrow x=2; y=3\)
Ta có : x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà (x - 1)2 \(\ge0\forall x\)
Nên (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1
\(P=x^2-2x+5\)
\(P=x^2-2x+1+4\)
\(P=\left(x-1\right)^2+4\ge4\)
=> GTNN của P = 4
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy................
1) a)
\(P=x^2-2x+5\)
\(=x^2-2x+4+1\)
\(=\left(x+2\right)^2+1\ge1\)
vậy min O =1 khi x= -2
1)
c) K = 4x - x2 - 5
= -x2 + 4x - 4 - 1
= - (x2 - 4x + 4) - 1
= - (x - 2)2 - 1
Vì (x - 2)2 \(\ge0\forall x\)
=> - (x - 2)2 \(\le0\forall x\)
=> -(x - 2)2 \(\le-1\forall x\)
Vậy GTLN của biểu thức là - 1 khi và chi x = 2
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
Câu 1:
b, \(Q=x^2+y^2-x+6y+10\)
\(Q=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(Q=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của x;y ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Hay \(Q\ge\dfrac{3}{4}\) với mọi giá trị của x;y
Để \(Q=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy..............
Câu a;c tách như câu b,
Câu 2:
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của x ta có:
\(\left(x-2\right)^2-7\ge-7\)
\(-\left[\left(x-2\right)^2-7\right]\ge7\)
Hay \(A=7\) với mọi giá trị của x
Để \(A=7\) thì \(-\left[\left(x-2\right)^2-7\right]=7\)
\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy..............
b,c làm tương tự
Chúc bạn học tốt!!!
\(A=-\left(4x^2-4x+1\right)-\left(y^2+6y+9\right)+11\\ A=-\left(2x-1\right)^2-\left(y+3\right)^2+11\le11\\ A_{max}=11\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)