Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4+4^2+4^3+...+4^{100}\)
\(A=\left(4+\text{ }4^2\right)+\left(4^3+4^4\right)+...+\left(4^{99}+4^{100}\right)\)
\(A=\left(1+4\right).\left(4\right)+\left(1+4\right).\left(4^3\right)+...+\left(1+4\right).\left(4^{99}\right)\)
\(A=5.\left(4+4^3+4^5+...+4^{99}\right)\)
Vậy A chia hết cho 5
Các bạn nha!
\(A=1+4+4^2+...+4^{99}\)
\(A=\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{96}+4^{97}+4^{98}+4^{99}\right)\)
\(A=85+4^7\left(1+4+4^2+4^3\right)...+4^{96}\left(1+4+4^2+4^3\right)\)
\(A=85+4^7.85+...+4^{96}.85\)
\(A=85.\left(1+4^7+...+4^{96}\right)\)
Vì 85 chia hết cho 17 nên A chia hết cho 17
1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)
\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)
\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)
\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)
2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)
\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)
\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )
b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )
Ta có:
A=(41+42)+(43+44)+...+(499+4100)
A=4.(1+4)+43.(1+4)+...+499.(1+4)
A=4.5+43.5+...+499.5
A=5.(4+43+...+499)
=>A chia hết cho 5
bài này tớ đã biết nhưng chỉ thử các bạn thôi... cám ơn nhiều nha
đặt A = 3 + 32 + 33 + 34 + ... + 399 + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3 ( 1 + 3 ) + 33 ( 1 + 3 ) + ... + 399 ( 1 + 3 )
A = 3 . 4 + 33 . 4 + ... + 399 . 4
A = 4 . ( 3 + 33 + ... + 399 ) \(⋮\)4
S = 1 + 3 + 32 + ... + 399
= ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
= 1.4 + 32(1+3) + ... + 398(1+3)
= 4.(1+32+...+398) chia hết cho 4
=> S = 1 + 31 + 32 + ........ + 399
= ( 1 + 31 ) + ( 32 + 33 ) + .......... + ( 398 + 399 )
= 4 + 32( 1 + 31 ) + ......... + 398( 1 + 31 )
= 4 . 32 . 4 + .......... + 398 . 4
= 4( 1 + ............ + 398 ) chia hết cho 4
=> ĐPCM
a) 8 . 2n + 2n+1 = 2n . ( 8 + 2 ) = 2n . 10 = ....0
b) có vấn đề
c) 4n+3 + 4n+2 - 4n+1 - 4n = 4n . ( 43 + 42 - 4 - 1 ) = 4n . 75 = 4n-1 . 4 . 75 = 300 . 4n-1 \(⋮\)300
\(A=\left(1+4+4^2+4^3+4^4\right)+...+4^{95}\left(1+4+4^2+4^3+4^4\right)\)
\(=341\cdot\left(1+...+4^{95}\right)⋮31\)