Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)
Uk bạn ! Đây là toán bồi dưỡng học sinh giỏi toán 6 ! Giúp mik với ~ !
a)5.(x+3)-2.(x+4)-(x-2)=17
=> 5x + 15 - 2x - 8 - x + 2 = 17
=> 2x + 9 = 17
=> 2x = 8
=> x = 4
b) S=1.3+2.4+3.5+...+48.50+49.51
= 1(2 + 1) + 2(3 + 1) + 3(4 + 1) + ... + 48(49 + 1) + 49(50 + 1)
= 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + ... + 48 + 48.49 + 49 + 49.50
= (1 + 2 + 3 + ... + 49) + (1.2 + 2.3 + 3.4 + ... + 49.50)
đặt A = 1 + 2 + 3 + ... + 49 = (1 + 49).49 : 2 = 1225
đặt B = 1.2 + 2.3 + 3.4 + ... + 49.50
3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3
3B = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50
3B = 49.50.51
B = 49.50.51 : 3 = 41650
A + B = S = 41650 + 1225 = 42875
3.2/1.3.2+3.2/3.5.2+3.2/5.7.2+...+3.2/49.51
3/2(2/1.3+2/3.5+2/5.7+....+2/49.51)
3/2(1-1/3+1/3-1/5+1/5-1/7+....+1/49-1/51)
3/2(1-1/51)
3/2 . 50/51
25/17
áp dụng công thức nếu có thừa số thứ 2 ở mẫu trừ đi thừa số thứ 1 bằng số trên tử thi \(\frac{1}{a}-\frac{1}{b}\) ab ở đây là 2 thừa số ở mẫu
VD;3/1.3+3/3.5+...+3/49.51(vì tất cả mẫu trừ cho nhau đều =tử)
nên = 1/1-1/3+1/3+1/5+...+1/49-1/51
=1-1/51
=50/51
a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5
=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5
=(1-1/101).2,5
=100/101.2,5
=250/101
c) =(2/2.4+2/4.6+2/6.8+...+2/2008-2/2010).2
=(1/2-1/4+1/4-1/6+1/6-1/8+...+1/2008-1/2010).2
=(1/2-1/2010).2
=1004/1005
a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)
b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(=\frac{15}{16}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!1111
\(A=\frac{3}{2\cdot4}+\frac{3}{4\cdot6}+...+\frac{3}{48\cdot50}\)---> Mik nghĩ bn ghi nhầm :]
\(A=\frac{3}{2}\left[\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{48\cdot50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{48}-\frac{1}{50}\right]\)
\(A=\frac{3}{2}\left[\frac{1}{2}-\frac{1}{50}\right]=\frac{3}{2}\cdot\frac{12}{25}=\frac{18}{25}\)
Vậy A = 18/25
\(B=\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+...+\frac{5}{49\cdot51}\)
\(B=\frac{5}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{49\cdot51}\right]\)
\(B=\frac{5}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right]\)
\(B=\frac{5}{2}\left[1-\frac{1}{51}\right]=\frac{5}{2}\cdot\frac{50}{51}=\frac{125}{51}\)
Mik ghi đúng mà
Huhu ai giúp mik với
Nhanh mik