K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\frac{\left[2\left(y-x\right)^3-2\left(y-x\right)^2+\left(x-y\right)\right]}{y-x}\)

\(=\frac{2\left(y-x\right)^3}{y-x}-\frac{2\left(y-x\right)^2}{y-x}+\frac{x-y}{y-x}\)

\(=2\left(y-x\right)^2-2\left(y-x\right)-1\)

\(=2y^2-4yx+2x^2-2y+2x-1\)

24 tháng 3 2020

cảm ơn bạn nha

banhqua

5 tháng 8 2017

Bài 2:

\(A=x^2+4y^2-2x+10-4xy-4y\)

\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)

\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)

\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)

\(=x^2+2xy+y^2+2x+2y+1\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1\)

Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)

\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)

\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)

Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)

\(D=x^2+y^2+2xy-4x-4y-3\)

\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:

\(D=4^2-4.4-3=16-16-3=-3\)

5 tháng 8 2017

Bài 3:

a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)

\(=-\left(3x-2\right)^2-1\)

Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)

Vậy N < 0

b) ghi đề cẩn thận lại đi, mk k hiểu

Ói , hoa mắt chóng mặt nhức đầu ,

9 tháng 8 2017

sao giống có chữa quá z

16 tháng 8 2019

\(\text{a) }\left(x-1\right)\left(x^2+y\right)-\left(x^2-y\right)\left(x-2\right)-x\left(x+2y\right)+3\left(y-5\right)\)

\(=\left(x^3+xy-x^2-y\right)-\left(x^3-2x^2-xy+2y\right)-\left(x^2+2xy\right)+\left(3y-15\right)\)

\(=x^3+xy-x^2-y-x^3+2x^2+xy-2y-x^2-2xy+3y-15\)

\(=\left(x^3+x^3\right)+\left(-x^2+2x^2-x^2\right)+\left(xy+xy-2xy\right)+\left(-y-2y+3y\right)-15\)

\(=0+0+0+0-15\)

\(=-15\)

\(\text{b) }6\left(x^3y+x-3\right)-6x\left(2xy^3+1\right)-3x^2y\left(2x-4y^2\right)\)

\(=\left(6x^3y+6x-18\right)-\left(12x^2y^3+6x\right)-\left(6x^3y-12x^2y^3\right)\)

\(=6x^3y+6x-18-12x^2y^3-6x-6x^3y+12x^2y^3\)

\(=\left(6x^3y-6x^3y\right)+\left(6x-6x\right)+\left(-12x^2y^3+12x^2y^3\right)-18\)

\(=0+0+0-18\)

\(=-18\)

\(\text{c) }\left(x^2+2xy+4y^2\right)\left(x-2y\right)-6\left(\frac{1}{2}-\frac{4}{3}y^3\right)\)

\(=\left(x^3-2x^2y+2x^2y-4xy^2+4xy^2-8y^3\right)-\left(3-8y^3\right)\)

\(=\left(x^3-8y^3\right)-\left(3-8y^3\right)\)

\(=x^3-8y^3-3+8y^3\)

\(=x^3-3\)

Câu 2: 

\(B=x^2+2x+y^2-2x-2xy+37\)

\(=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+37\)

\(=\left(x-y\right)^2+2\left(x-y\right)+37\)

\(=7^2+2\cdot7+37=49+37+14=100\)

Câu 3: 

\(C=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)

\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

\(=5^2-2\cdot5+10=25\)

6 tháng 8 2019

A=\(\left(x-y\right)^2+\left(x+y\right)^2=x^2-2xy+y^2+x^2+2xy+y^2=2x^2+2y^2\)

B=\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=\left(2y\right).\left(2x\right)\)

C=\(\left(2a+b\right)^2-\left(2a-b\right)^2=\left(2a+b-2a+b\right)\left(2a+b+2a-b\right)=\left(2b\right).\left(4a\right)\)

D=\(\left(2x-1\right)^2-2\left(2x-3\right)^2+4=4x^2-4x+1-4x+6+4=4x^2-8x+11\)

E=\(\left(x+3y\right)^2-\left(x-3y\right)^2=\left(x+3y-x+3y\right)\left(x+3y+x-3y\right)=\left(6y\right).\left(2x\right)\)

F=\(\left(2x+y\right)^2-\left(2x-y\right)^2=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)=\left(2y\right).\left(4x\right)\)

G=\(\left(x-2y\right)^2+4\left(x-2y\right)y+4y^2=x^2-4xy+4y^2+4xy-8y^2+4y^2=x^2\)

H=\(\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y^{ }\right)^2=x^2-2xy+y^2-4\left(x^2+2xy-xy-2y^2\right)+4x+8y=x^2-2xy+y^2-4x^2-8xy+4xy+8y^2+4x+8y=3x^2+12xy-9y^2+4x+8y\)

15 tháng 9 2019

Ta có:

a) A= (x-y)^2 + (x+y)^2

A= x^2 -2xy + y^2 + x^2 + 2xy + y^2

A= 2x^2+ 2y^2

b) B= (x+y)^2 -( x-y)^2

B= (x+y-x+y)(x+y+x-y)

B= 2y.2x= 4xy

c) C= (2a+b)^2 -( 2a-b)^2

C= (2a+b-2a+b)(2a+b+2a-b)

C= 2b.4a

C= 8ab

d) D= (2x-1)^2 -2(2x-3)^2+4

D= 4x^2 -4x+1 -2( 4x^2 -12x + 9) +4

D= 4x^2 -4x+1 -8x^2 + 24x -18 +4

D= -4x^2 + 20x-13

e) E= (x+3y)^2-(x-3y)^2

E= (x+3y-x+3y)(x+3y+x-3y)

E= 6y.2x= 12xy

f) F= (2x+y)^2-(2x-y)^2

F=(2x+y-2x+y)(2x+y+2x-y)

F= 2y.4x= 8xy

g) G= (x-2y)^2 + 4(x-2y)y + 4y^2

G= (x-2y)^2 + 2(x-2y)2y + (2y)^2

G= (x-2y+2y)^2

G= x^2

h) H= (x-y)^2 -4(x-y)(x+2y)+ 4(x+2y)^2

H= (x-y)^2 - 2(x-y)2(x+2y) + [2(x+2y)]^2

H= (x-y- 2x-4y)^2

H= (-x-5y)^2

Lưu ý (-A-B)^2 = ( A+ B)^2

=> H= (x+5y)^2